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Purpose: Disease management (DM) programs are typically evaluated using study 

designs that are susceptible to selection bias and other internal validity threats because 

participants are often allowed to self-select into the programs. As a result, DM 

evaluation results are usually biased because researchers are unable to control for 

preexisting differences between the DM participants and non-participants. Linden and 

Adams (2006) offer an instrumental variables (IV) regression procedure as a means of 

deriving unbiased estimates of DM program effectiveness. However, IV regression relies 

upon the existence of one or more variables ( or instruments) that produce considerable 

variation in the program participation variable, but have no direct effect on the outcome 

variable. Linden and Adams argue that participant three-digit zip codes meet these 

criteria and can be used as instruments in IV regression. 

Methods: To test the feasibility of their IV regression procedure, a series of ordinary 

least squares (OLS) and instrumental variables (IV) regression models were used to 
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evaluate the effects of a high intensity Medicaid diabetes DM program on annual 

diabetes-related costs, emergency department visits, and hospital days. Program 

participation was the endogenous variable and age, gender, and propensity scores were 

the exogenous variable. Standard statistical tests were performed to assess the quality 

and validity of the IV regression models and zip code instruments. 

Results: The study found that using propensity scores as covariates in the regression 

models appeared to offer a viable means of controlling for potential overt biases. 

However, the statistical tests performed to assess the quality and validity of the IV 

regression procedure using recipient three-digit zip codes as instruments indicated that it 

may not be appropriate due to various issues such as multicollinearity, lack of significant 

differences between the IV and OLS regression models, and weak instrument bias. 

Conclusions: While the results of the present study do not support the use of participant 

three-digit zip codes as instruments in IV regression, the quality of the results obtained 

using this procedure may depend on the specific sample that is used in the analysis. 

Researchers may thus still wish to consider this procedure when evaluating DM programs 

because different samples may yield different results. 
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Chapter 1 

Introduction 

Two methods that can be used to estimate causal relationships using observational 

(i.e., quasi-experimental) data are the focus of this study. Causal relationships are cause­

effect relationships that occur when one variable produces an effect in another variable. 

Effects are changes ( or lack of changes) in outcome variables that can be attributed to 

program participation (Davidson, 2005). Social researchers examine causal relationships 

when they evaluate programs (or interventions) to determine if they caused certain 

outcomes (Shadish, Cook, & Campbell, 2002; Trochim, 2005). 

The desire to estimate causal relationships between independent and dependent 

variables is an important objective in most quantitative social research (Winship & 

Morgan, 1999). Under the quantitative paradigm, experimental studies are viewed as the 

"gold standard" because they have the strongest internal validity due to random assignment 

of subjects to experimental (i.e., treatment, program, or intervention) and control groups. 

If executed correctly, randomization ensures that both groups are probabilistically 

equivalent (Trochim, 2005). During such studies, the groups are treated the same except 

that the treatment is administered to the experimental group. Ordinary least squares (OLS) 

regression is a statistical procedure that can be used to estimate the average effects of 

program participation for the treatment and control groups (Mohr, 1995). Differences that 

exist between the groups are viewed as unbiased estimates of the program's effects 

(Achen, 1986). 



www.manaraa.com

2 

True experimental designs are relatively rare in quantitative social research (Achen, 

1986). This is due to the fact that social experiments are often very expensive to conduct 

and subjects may be unwilling to cooperate with study requirements. Moreover, 

researchers are often unable to control which individuals receive the treatment. For these 

reasons, researchers usually rely on observational data generated through non-experimental 

processes such as censuses, surveys, or administrative activities when assessing causal 

effects of social interventions (Winship & Morgan, 1999). Relying on observational data 

is problematic, however, because it involves the creation of nonequivalent treatment and 

control groups, which can be a threat to the study's internal validity due to selection bias 

(Shadish et al., 2002). 

Selection bias exists whenever subjects cannot be assigned randomly to treatment 

and control groups (McMillan & Schumacher, 2006). If present, it can interfere with the 

ability of researchers to make appropriate inferences about program causal effects. In the 

health care field, disease management (DM) programs are often evaluated using data 

contaminated by selection bias due to participant self-selection (Linden & Adams, 2006). 

The ability of DM evaluators to estimate program effects is therefore limited. Linden and 

Adams (2006) offer an econometric technique known as instrumental variables (IV) 

regression as a solution to the selection bias problem in DM evaluations. This study 

explored the utility of Linden and Adams' (2006) IV regression procedure by using it to 

analyze observational data on a group of Virginia Medicaid diabetes DM participants. The 

results of the IV regression models were compared against the results obtained using OLS 
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regression to determine if Linden and Adams' (2006) procedure can generalize to this 

population. 

Statement of the Problem 

Since the early 1990s, many health plans and state Medicaid agencies have 

implemented disease management (DM) as a model of care for patients with chronic 

disease in an effort to reduce health care costs while improving the quality of care that 

these individuals receive. DM is a coordinated system of health care communications and 

interventions for populations that suffer from chronic diseases that require substantial 

patient self-care efforts (Buntin, 2006; Congressional Budget Office, 2004; Gillespie & 

Rossiter, 2003). Chronic diseases are prolonged illnesses that do not resolve 

spontaneously and are generally not curable by medication or vaccinations (Florida 

Department of Health, 2007). Examples of chronic diseases include kidney disease, 

diabetes, heart disease, HIV/AIDS, depression, traumatic brain injury, and multiple 

sclerosis (Johnson, 2003). 

DM has evolved over the years from a model that focused on specific patients 

identified as having chronic illnesses through retrospective reviews of medical claim 

records to a population-based model focusing on all patients identified as having chronic 

illnesses based on predictive modeling algorithms. These modeling algorithms typically 

classify all patients with chronic illnesses into various high and low risk categories based 

on their potential for future high costs and poor health outcomes (Sprague, 2003). 

Despite their popularity, DM programs have been one of the least rigorously 

evaluated developments in the health services area (Matheson, Wilkins, & Psacharopoulos, 
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2006; Mattke, Seid, & Ma, 2007). In fact, Buntin, (2006) refers to many DM evaluations 

as nothing more than marketing disguised as research. One difficulty surrounding rigorous 

DM evaluation is that patients often self-select into the programs. Thus, comparisons 

between participants and non-participants on costs and other outcome variables will 

probably be skewed because participants may be healthier or more active in managing their 

own care than non-participants (Congressional Budget Office, 2004). 

Another obstacle to rigorous evaluation has been DM's shift to population-based 

care, where all eligible individuals are automatically enrolled unless they specifically 

request to be excluded. The emphasis on population-based care means that fewer control 

subjects are available for comparison purposes in DM evaluations (Linden & Adams, 

2006). In fact, this obstacle was encountered in the present study because all of the 

Medicaid diabetes recipients were enrolled in the DM program. A way to overcome this 

obstacle, however, is to use DM patients who receive the high intensity intervention as the 

treatment group and DM participants who do not receive this intervention as the control 

group, which was the approach adopted in this study. (Additional details on the treatment 

and control groups are provided later in this chapter and in Chapter 3.) 

The inability to evaluate DM programs rigorously calls into question the value of 

disease management, which is under increasing scrutiny from a variety of stakeholders 

including government agencies, managed care organizations, and self-insured employers 

because they want to know how well these programs have performed. However, the 

inability to conduct quality evaluations makes it extremely difficult to separate DM 

program participation effects on outcomes from other external factors. Some observers 
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argue that the lack of credible evaluations is the most important issue currently facing 

disease management (MacDowell & Wilson, 2002). 

IV regression, which is a member of a family of statistical models known as 

selection bias models, can provide social researchers with a tool for evaluating DM 

programs with more rigor. These statistically complex models were primarily developed 

by economists and are often difficult to implement. The models are intended to adjust for 

selection bias due to nonequivalent group designs by deriving unbiased estimates of 

program participation effects (Shadish, et al. 2002). In order to implement IV regression, 

researchers must identify one or more variables (referred to as instruments) that: 1) have a 

causal effect on the program variable (a dichotomous variable coded as 1 = participant and 

0 = non-participant), 2) affect the outcome variable only through the program variable, and 

3) are independent of common causes of the outcome variable (Newhouse, 2005; Heman 

& Robins, 2006). 

Identifying such variables can be very difficult, especially in DM evaluations that 

rely mostly on administrative claims data, which limits the number of variables for 

researchers to select (Linden & Adams, 2006). 1 Linden and Adams (2006) argue that 

recipient three-digit zip code (i.e., the first three digits of an individual's residential zip 

code) can be used as an instrument in IV regression. Their argument is based on the 

theoretical supposition that a valid instrument will function as a randomizer by assigning 

1 In this study, administrative claims data represent records of the health services that Medicaid recipients 
received from providers. More specifically, claims data represent the electronic versions of bills submitted 
by health care providers for providing services to Medicaid recipients (Piecoro, Wang, Dixon, & Crovo, 
1999; Wyant & Parente, n.d.). 
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subjects to the treatment and control groups irrespective of the outcome variable (Leigh & 

Schembri, 2004). While Linden and Adams' (2006) analysis suggests that three-digit zip 

codes are feasible, there may be reason for some skepticism. For instance, the IV effect 

estimate will be biased if the zip code instruments fail to meet conditions 1 and 3, which 

are generally not statistically verifiable. The effect will also be biased if conditions 1 and 3 

fail and the association between zip codes and program participation is weak (Heman & 

Robins, 2006). Due to the importance of identifying rigorous statistical methods that can 

be applied to DM evaluations, research needs to be conducted on the zip code instruments 

to determine if they can generalize to other DM populations while meeting the IV 

regression assumptions. 

Purpose of the Study 

The problem addressed in the present study is whether IV regression using the 

three-digit zip code instrumental variables procedure can generalize to a group of Virginia 

Medicaid diabetes DM patients. In other words, the main purpose of this study is not to 

evaluate the effectiveness of the Virginia Healthy ReturniM DM Program or to determine 

the appropriateness of IV regression in general, but rather to assess the feasibility of an 

instrumental variables procedure developed by Linden and Adams (2006) for DM 

evaluations. The study is motivated by the problem of using observational data in lieu of 

experimental data to draw causal inferences about program effects. Specifically, the 

purpose of the study was to compare OLS regression and IV regression using patient three­

digit zip codes as instrumental variables, to use these procedures to estimate the effects of 

high intensity DM program participation on three outcome variables, and then to determine 
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which procedure offered the best means for estimating program participation effects when 

analyzing observational data.2 Implications of the analytical findings are provided in 

Chapter 5. 

Rationale and Significance of the Study 

The article by Linden and Adams (2006) provides the rationale for this study. In 

the article, Linden and Adams argue that IV regression using patient three-digit zip codes 

as instrumental variables can be used to provide unbiased estimates of the effects of 

program participation in DM evaluations.3 A key aspect of IV regression for program 

evaluation is that the researchers must be able to find one or more variables that are 

predictive ofan individual's program participation, but not associated with any unobserved 

confounding variables that influence the outcome. This task can be very difficult when 

dealing with administrative claims data due to the limited number of variables that are 

available. Linden and Adams (2006) hypothesize that patient zip codes are appropriate 

instruments to use when employing IV regression for DM evaluations for two reasons: 1) 

residing in a DM covered area makes the individual eligible for participation, but does not 

guarantee that the individual will participate, and 2) living in a given zip code may be 

independent of unobserved covariates. While these covariates are often unmeasured or 

2 Generally, researchers test the feasibility of IV regression models by comparing them to OLS regression 
models which are usually viewed as being more efficient. This is often accomplished by testing whether the 
treatment variable is correlated with the error term. Rejecting the null hypothesis of no correlation ( or 
endogeniety) suggests that there is sufficient difference between the OLS and IV coefficients to reject the 
OLS model in favor of the IV model (Hadley et al., 2003). 
3 According to Linden and Adams (2006), IV regression can be used to derive an unbiased estimate of 
program participation effects. However, Angrist and Krueger (2001) and Wooldridge (2002) argue that 
while IV estimators are consistent, they are not unbiased because they represent a ratio ofrandom quantities. 
Nevertheless, because this study sought to assess the feasibility of Linden and Adams' procedure, their 
terminology was adopted. 
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even unimagined, examples may include motivation, illness level, health status, and self-

care diligence (Diamond, 1999; Greenland, 2000; Fetterolf & Olson, 2008). 

To test their hypothesis, Linden and Adams (2006) collected one year's worth of 

claims data ( excluding pharmacy claims) for a group of diabetes DM patients and then 

estimated a series ofOLS and IV regression models for different outcome variables.
4 They 

compared parameter estimates produced by both models and concluded that IV estimation 

using patient zip codes as instruments can be useful when OLS estimates are influenced by 

selection bias. However, the authors' note that they failed to perform a sensitivity analysis 

on their results and that the zip code IV procedure may not generalize to other DM 

programs. Sensitivity analyses are important in observational studies because they can 

provide insights into the extent to which the empirical results are sensitive to proxies for 

the treatment variable (Kennedy, 2003; Rosenbaum, 2005). It should be noted that the 

article by Linden and Adams (2006) is the only study that the author has found to date that 

uses IV regression to evaluate DM program effectiveness. This finding is not surprising 

since IV methods, which are commonly used in econometrics, are still relatively new to 

medical and epidemiological research (Greenland, 2000; Leigh & Schembri, 2004; 

Newhouse, 2005). 

This study extended Linden and Adams' (2006) work by examining the feasibility 

of using OLS and IV regression analyses to evaluate DM programs, testing to determine if 

the zip code IV procedure generalized to other DM program populations, and performing a 

sensitivity test on the program indicator variable. 
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Overview of the Literature 

Four relevant bodies of literature provide important background information on the 

study topic: general disease management, patient self-management education and self­

efficacy theory, diabetes disease management evaluation, and instrumental variables 

regression. While a detailed review of these bodies is beyond the scope of this chapter, a 

cursory review will be provided. The general disease management literature provides the 

foundation for the relevancy of the present study, while the patient self-management 

literature provides the theoretical justification for the education component ofDM.5 The 

diabetes disease management evaluation literature provides insights into the designs that 

researchers have employed to evaluate these programs, the variables they have analyzed, 

and their study findings. The IV regression literature provides information on how to 

estimate IV regression models as well as procedures for checking the adequacy of the 

models. It also provides information on how other researchers have employed IV 

regression to reduce the influence of selection bias in observational studies. Additional 

information on these bodies of literature is provided below. 

4 
Linden and Adams (2006) did not indicate why they excluded pharmacy claims from their analysis. 

5 
While not discussed in the present study, the counterfactual model of causality provides the theoretical 

justification for the statistical methods used in this analysis. Briefly stated, the counterfactual is what 
researchers would ideally like to determine because it represents what would have happened to individuals 
who participated in the program if they had never received the intervention. However, the counterfactual 
state cannot be observed because it is not possible for individuals who participated in a treatment to go back 
in time in order to not participate. As a result, researchers have employed a variety of statistical methods, 
including OLS, IV, and propensity score regression procedures, in an effort to approximate counterfactual 
states. Additional information on the counterfactual model of causality can be found in Winship and Morgan 
(1999), Gelman and Hill (2007), Morgan and Winship (2007), and Schneider et al. (2007). 
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Overview of Disease Management 

Disease management has become one of the latest fads in government and health 

foundations due to its promise of lowering health care costs by reducing emergency 

department visits and hospital stays for patients with costly chronic illnesses (Fireman, 

Bartlett, & Selby, 2004). In fact, approximately 97 percent of US health plans and at least 

43 state Medicaid agencies are developing or have implemented disease management 

programs (Center on an Aging Society, 2004; Afifi, Morisky, Kominski, & Kotlerman, 

2007). Chronic diseases are the leading cause of death in the United States, accounting for 

approximately seven out often deaths in 2004. During that time, care for patients with 

chronic diseases accounted for approximately 75 percent of the $1.4 trillion spent on health 

care and almost 80 percent of all Medicaid expenditures (Department of Medical 

Assistance Services [DMAS], 2005a). 

Disease management seeks to improve outcomes for individuals with chronic 

diseases by promoting prevention of disease-related complications and exacerbations using 

patient empowerment tools and evidence-based guidelines. It strives to improve the 

overall health of selected populations with chronic conditions by supporting the patient­

clinician relationship. Major DM program components include the identification and 

enrollment of patient populations, the use of evidence-based practice guidelines by patients 

and health care providers, the provision of services that enhance patient self-care, and 

patient-provider communication and collaboration (Gillespie & Rossiter, 2003). 

Private and public health insurance organizations have developed DM programs in 

an effort to ease individuals and society of the social, psychological, physical, and 
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economic pressures related to chronic illnesses. The intent behind these programs is to 

reduce health care costs while improving the quality of care that patients receive. When 

considering that people who suffer from chronic diseases account for approximately 72 

percent of all physician office visits, 76 percent of all inpatient hospital stays, and 88 

percent of all prescription drug fills, DM programs offer a means of containing, or even 

reducing, health care costs by focusing on prevention rather than acute care services for 

these individuals (DMAS, 2006). 

Due to the potential to achieve positive outcomes, many state Medicaid agencies 

have implemented DM programs for their respective Medicaid populations, which tend to 

be less educated, poorer, and more likely to suffer from disabilities than the general U.S. 

population (Gillespie & Rossiter, 2003). In Virginia, the Department of Medical 

Assistance Services (DMAS) provides DM services to Medicaid recipients who are not 

enrolled in managed care organizations through the Healthy Returns5M Disease 

Management Program, which became operational in January 2006. As of July 2008, the 

Healthy Returns5M program provided DM services to 5,308 Virginia Medicaid recipients 

who suffered from either asthma, diabetes, coronary artery disease, congestive heart 

failure, or chronic obstructive pulmonary disorder (DMAS, 2006; Health Management 

Corporation [HMC), 2008). 

Substantial resource investments have been made in the development ofDM 

programs since the early 1990s. For example, the nation invested more than $1 billion in 

the development ofDM programs and related activities in 1999 alone. Despite the 

considerable investments that have been made in these interventions, however, the 
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availability of information on their effectiveness and safety is limited. According to some 

critics, the poor quality ofDM outcome information stems from statistical biases, 

abbreviated study periods, and small patient universes, which may cast some doubt on the 

success claims of many DM programs (Ofrnan, Badamgarav, Henning, Knight, Gano, 

Levan, Gur-Arie, Richards, Hasselbald, & Wingarten, 2004). 

Patient Self-Management Education and Self-Efficacy Theory 

Chronic diseases often result in debilitating conditions for individuals who suffer 

from them. However, research shows that certain lifestyle changes such as eliminating 

tobacco use, improving diet and nutrition, and participating in regular exercise regimens 

can enhance the physical and mental health of chronically ill patients. Research further 

suggests that adopting improved health behaviors can delay or even prevent the onset of 

some chronic illnesses (Lorig, Stewart, Ritter, Gonzalez, Laurent, & Lynch, 1996). 

Because chronic diseases cannot be cured, conventional medical care that is focused on 

diagnosing and treating acute health care problems is often inappropriate for chronically ill 

individuals. Consequently, many individuals with chronic diseases may fail to receive the 

level of care needed to achieve optimal health outcomes (Funnell & Anderson, 2002). 

Due to the inability of the traditional medical system to provide the support and 

education that individuals with chronic diseases require to effectively care for and live with 

their illnesses, the responsibility for the daily management of these conditions often falls 

entirely upon the individuals who have them (Funnell & Anderson, 2002). Disease 

management (DM) programs attempt to prepare participants for this task by emphasizing 

patient self-management education (Disease Management Association of America, n.d.). 
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Self-management education differs from traditional patient health education that 

focuses on providing individuals with disease-specific information and technical skills 

(i.e., learning how to monitor blood glucose levels). Self-management education 

complements traditional patient health education by focusing on developing individual 

problem-solving skills. In particular, self-management education teaches patients how to 

identify problems, make decisions, implement appropriate actions, and even alter ac;tions 

as their diseases or personal circumstances change. The development of patient short-term 

action plans is a central feature of self-management education. Action plans are short 

plans that identify behavior changes that patients can realistically make in order to 

effectively manage their diseases (i.e., walk three times a week before lunch) 

(Bodenheimer, Lorig, Holman, & Grumbach, 2002; Nuovo, 2007). 

An important concept in DM self-management education is self-efficacy theory, 

which refers to the confidence that individuals have in their ability to change behaviors in 

order to meet specific goals. Self-efficacy is derived from four sources of information: 

performance attainment, vicarious experiences, verbal persuasion, and physiological states. 

Of the four sources of information, performance attainment is the most influential because 

it is derived from individual experiences of success. Because people tend to avoid tasks 

that they believe they cannot successfully perform and undertake tasks that they believe 

they can successfully perform, self-management education uses self-efficacy theory to 

assist patients with developing tools and strategies to successfully change their behaviors 

(Lorig et al., 1996). 
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Action plans are an example of one such tool that DM programs use. The plans are 

based in part on the role that performance attainment plays in self-efficacy. Self-efficacy 

theory posits that the successful achievement of the action plans is more important than the 

content of the actual plans because success will motivate individuals to undertake 

behavioral changes. An important characteristic of the action plans is that they are not 

dictated by physicians. Instead, they are developed by the patients as something that they 

want to achieve. In other words, the plans are intended to give individuals the confidence 

and motivation needed to manage their diseases effectively (Bodenheimer et al., 2002). 

While not a central focus of the present study, self-efficacy theory can provide a 

means of understanding how self-management education promotes healthy behavioral 

changes (or disease management behavior) among DM participants. Organizations that 

purchase DM programs that promote patient self-management education may achieve 

certain outcomes over time, such as reduced health care costs and utilizations, if patients 

are knowledgeable, motivated, and confident in their abilities to change unhealthy 

behaviors that exacerbate their chronic conditions. However, this can only occur if the 

self-management education curriculum is appropriate for the DM target population. One 

way to evaluate the effectiveness ofDM programs may be to examine the effectiveness of 

their education interventions in terms of self-efficacy theory (Lorig, Sobel, Rittner, 

Laurent, & Hobbs, 2001; Siu, Chan, Poon, Chui, & Chan, 2007). 

Diabetes-Related Disease Management Evaluations 

Because the present study only examined data on a group of diabetes DM patients, 

this section is limited to diabetes-specific DM program evaluations and/or evaluations of 
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DM programs that provide services on several chronic illnesses including diabetes. (For 

clarity, these two program types will be referred to as diabetes-related DM programs.) 

The review found that a variety of methods and statistical procedures have been 

employed in both published and unpublished studies to evaluate diabetes-related DM 

interventions. For instance, Meigs, Cagliero, Dubey, Murphy-Sheehy, Gildesgame, 

Chueh, Barry, Singer, and Nathan (2003), Choe, Mitrovich, Dubay, Haywood, Krei_n, and 

Vijan (2005), and Landon et al. (2006) used experimental designs to study various diabetes 

DM elements. In these studies, several statistical procedures were employed to analyze 

data including significance tests, parametric and non-parametric analysis of variance, and 

linear and logistic regression models. 

While these studies all found that DM interventions tended to produce positive 

results for the enrolled diabetes patients, they were impacted by a number of shortcomings 

that may limit their applicability. In particular, Meigs et al. (2003) noted that their study 

was limited due to inadequate patient self-care data and because some of the participating 

physicians were unable to consistently integrate the intervention into their normal patient 

encounters. Choe et al. (2005) reported that their results may not generalize to other sites 

due to their small sample size and because the intervention was performed in a single 

suburban university-affiliated clinic. Finally, Landon et al. indicated that their findings are 

limited because they were forced to rely on subject matching rather than pure random 

assignment, which limited their ability to control for unobserved confounding variables. 

While experimental studies are preferred for determining the effects of health care­

related interventions, their widespread use is limited. This results from the fact that 
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employing true experimental designs in health care settings is often very difficult due to 

various financial, ethical, and practical issues (Harris & Remler, 1998). Thus, the review 

found that many researchers have used quasi-experimental and non-experimental designs 

to study DM programs. 

The quasi-experimental studies employed a variety of statistical procedures similar 

to the procedures used in the experimental studies to evaluate DM programs. For e;x.ample, 

Christakis, Connell, Richardson, and Maciejewski (2004) used linear, logistic, and Poisson 

regression models to evaluate Washington State's Medicaid DM program, while Afifi et al. 

(2007) used the two-part model and propensity scores to evaluate Florida's Medicaid DM 

program. The two-part model is similar to IV regression and was developed by 

econometricians in an effort to obtain statistically unbiased outcome estimates for 

programs in which participation decisions may be related to unobserved variables that 

influence outcomes (Wendel & Durnitras, 2005). The propensity score procedure is used 

to balance out the treatment and control groups in terms of their observed covariates when 

patients are allowed to self-select into programs (Ettner, 2004). Finally, Berg and Wadhwa 

(2007) used propensity score matching and non-parametric analysis of variance procedures 

to evaluate a telephonic DM program for elderly diabetic patients in three states using a 

matched-cohort study design. 

While these studies tended to find that DM program participation had positive 

effects on outcome variables, their findings may also be limited. Christakis et al. (2004) 

found that the DM program resulted in improved outcomes for patients with kidney 

disease, asthma, and diabetes, but not for congestive heart failure. Their findings may be 
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skewed because they were unable to control for many of the preexisting differences that 

existed between the treatment and control groups. Afifi et al. (2007) found that Florida's 

DM program appeared to reduce hospital stays and emergency department visits for 

individuals with chronic conditions; however, their findings may be limited if their 

statistical analysis did not address all sources of unobserved bias adequately. The analysis 

by Berg and Wadhwa (2007) revealed that a commercially delivered DM program c:an 

reduce hospitalizations, while improving self-management activities for diabetes patients. 

However, their study could be limited because propensity score matching only adjusts for 

observed differences. 

The non-experimental studies used statistical procedures that were similar to the 

ones used in the experimental and quasi-experimental designs. These studies also 

produced similar results. Coberly et al. (2007) used trend lines to examine the association 

between the number of phone calls patients received and healthy behaviors measured as 

the frequency with which patients obtained required hemoglobin and lipoprotein tests. 

They argued that these findings suggest that telephonic strategies should be used in order 

to promote healthy behaviors among diabetics. Mangione, Gerzoff, Williamson, Steers, 

Kerr, Brown, Waitzfelder, Marrero, Dudley, Kim, Herman, Thompson, Safford, and Selby 

(2006) used hierarchical mixed-effects regression models to examine the association 

between quality of care and the intensity of diabetes disease management. They randomly 

surveyed 8,661 diabetics who were receiving DM services through 63 physician groups 

located within seven health plans. The analysis revealed that increased use of DM services 

was significantly related to enhanced diabetes care. 
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As with the experimental and quasi-experimental designs, the findings from the 

non-experimental studies may also be limited. Coberly et al. (2007) reported that their 

outcome variables (number of tests received) do not necessarily proxy for healthy 

behaviors and that these variables may contain errors because they were developed using 

administrative claims data and not medical chart reviews which are the preferred source for 

this information. Mangione et al. (2006) reported that their findings were also limited due 

to the short participation time period for many of the subjects in the disease management 

programs (less than three years) and because they did not randomly select the physician 

groups from which they selected their subjects. 

Instrumental Variables Regression and Selection Bias 

The instrumental variables (IV) regression literature provided the justification for 

using the IV method in the present study. The objective of health outcomes research is to 

estimate the effects of medical interventions on patient health and well-being. The most 

appropriate study designs for achieving this result are experimental. However, these 

designs are often not employed for various reasons. As a result, interest is growing among 

health services researchers in the use of IV regression in non-experimental studies (Posner, 

Ash, Freund, Moskowitz, & Shwartz, 2002). An IV is an observable variable ( or set of 

variables) that can be used as a proxy for random assignment of subjects to treatment and 

control groups in order to calculate unbiased (or consistent) program effect estimates 

(Harris & Remler, 1998). 

IV regression is conducted in two stages. In the first stage, the instrument ( or set of 

instruments) is used to predict program exposure status and in the second stage, the 
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outcome variable. Variables that are selected as instruments must not be related to the 
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outcome variable (at least beyond its effect on participation) or be related to unobserved 

confounding variables that are not included in the model. This lack of association must be 

acceptable conceptually since it cannot be tested empirically (Posner et al., 2002).6 I:he 

two IV stages are usually executed simultaneously using the two-stage least squares 

(2SLS) regression procedure. If the stages are performed separately, then incorrect 

estimates of the model sum of squares and parameter standard errors will be obtained 

(Linden & Adams, 2006). 

The basis for IV regression is as follows. IfX and Y are the observed treatment 

and outcome variables, then their relationship to a third variable Z (the instrument or set of 

instruments) should also be observed. Z is presumed to be associated with X but not Y 

except through its association with X. Under this condition, the Z-Y association can be 

depicted as the product of the Z-X and X-Y associations: 

Associationzv = Associationzx * Associationxv 

This equation allows for the solution of the X-Y association and is useful when the 

observed X-Y association is confounded by unmeasured covariates. IV estimation acts as 

a randomization device if properly executed, thus allowing researchers to estimate the 

effect ofX on Y (Greenland, 2000; Leigh & Schembri, 2004). 

6 
However, if researchers have more instrumental variables than are needed, they can test whether the 

additional instruments are uncorrelated with the disturbance term in the regression model (Wooldridge, 
2002). 
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The importance of a valid IV estimator lies in the fact that it can be viewed as a 

ratio representing the joint projection of Y and X on Z, thus isolating a specific portion of 

the covariance between X and Y. If this covariation is to be used as the basis of a valid 

causal inference of the effect ofX on Y, then it must not be attributable to any extraneous 

variables that cause both Z and Y. The regression coefficient for X must be assumed to be 

constant for all subjects in the target population in order to justify the causal effect estimate 

obtained through the covariation as the population-level causal effect ofX on Y (Morgan 

& Winship, 2007). 

While IV regression is widely used in program evaluations, its use is somewhat 

controversial with some critics arguing that the procedure is sensitive to violations of its 

assumptions and that it fails to produce results that approximate an experimental design 

(Harris & Remler, 1998; Shadish et al., 2002). Moreover, there is no guarantee that IV 

regression will produce estimates that are more robust than those produced through OLS 

regression. For instance, Posner et al. (2002) and Hadley, Polsky, Mandelblatt, Mitchell, 

Weeks, Wang, Hwang, and the OPTIONS Research Team (2003) examined the 

effectiveness of early stage breast cancer screening and three breast cancer treatment 

interventions for elderly women respectively. In these studies, the researchers compared 

OLS and IV regression models to determine which methods offered the best adjustments 

for selection bias. 

Posner et al. found that both methods produced similar results, which they argued 

strengthen the credibility of the OLS model. (Researchers often select the OLS model if it 

produces results similar to the IV model because OLS is considered to be an efficient 
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estimator.) They recommended that researchers use several statistical procedures to 

determine how selection bias affects their results before deciding upon which method 

offers the best estimates of program participation effects. Hadley et al. (2003) also found 

similar results and argued that researchers should consider using both methods to estimate 

a range of possible outcome effects. 

However, other studies have found that IV regression produced better results tpan 

standard regression. For example, Fortney, Booth, Zhang, Humphrey, and Wiseman 

(1998) evaluated an Alcoholics Anonymous (AA) treatment program using both logistic 

and IV regression to test for the influence of selection bias. (Logistic regression is similar 

to OLS, but is used when the outcome variable is dichotomous.) Their analysis indicated 

that the IV model produced better estimates of program effects than the logistic regression 

model due to the influence of selection bias. Linden and Adams (2006) compared OLS 

and IV regression models in their diabetes DM analysis. They concluded that IV 

regression using zip code instruments could control for selection bias. However, they also 

indicated that researchers should use both OLS and IV regression models and select the 

one that produces the best estimates. 

Research Questions 

The present study was guided by the following three research questions: 

1. Which statistical method provides the best unbiased estimates of high intensity DM 

program participation on the outcome variables? 

2. Do the parameter estimates and confidence intervals for the predictor variables 

differ depending upon which statistical method is used? 
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3. What are the advantages and disadvantages of using OLS and IV regression to 

evaluate high intensity DM program effectiveness? 

The study hypothesis was that the three-digit zip code instrumental variables procedure 

will provide an unbiased estimate of the effects of disease management program 

participation on a group of high intensity Virginia Medicaid diabetes patients enrolled in 

the Virginia Healthy ReturniM Disease Management Program. 

Methodology 
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As previously mentioned, the purpose of this study was to compare and contrast 

OLS and IV regression using three-digit zip code instruments, which are two methods that 

can be employed to estimate the effects of participation in the Healthy ReturniM DM 

Program for a group of high intensity diabetes patients. Comparisons between the 

magnitudes, direction, and significance of the treatment effect estimates produced through 

both methods were made (Hadley et al., 2003). The Hausman specification test was 

performed to determine if the differences obtained between the OLS and IV regression 

models were significantly different and the relevancy of the zip code instruments was 

assessed by using both the Sargon chi-square test and the first stage model F-statistics 

from the IV regressions (Ender, n.d.; Hadley et al., 2003; Greene, 2003; Baum, 2006; 

Stock & Watson, 2007). Additional information on the study population, data source, and 

study variables is provided below. 

Population 

The population of interest for the present study consisted of all Virginia Medicaid 

diabetes recipients who were continuously enrolled in the Virginia Medicaid Healthy 
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ReturniM DM Program during calendar (CY) year 2007. Individuals eligible for the 

program are classified as either high intensity or standard intensity participants.7 Because 

the Healthy Returns5M DM Program operated as an opt-out program during the study 

period, almost all Medicaid recipients with diabetes were automatically enrolled. 

Recipients who were identified as high intensity based on their probability of incurring 

high future medical costs were given the option of participating in the high intensity 

intervention. Those who agreed were enrolled in the high intensity program, while those 

who declined were enrolled in the standard intensity program as high intensity on demand 

patients. (High intensity participants who were enrolled in the standard intensity program 

were excluded from this study. Additional information on the study population is 

presented in Chapter 3.) 

Standard intensity patients receive DM services such as an initial enrollment phone 

call, a welcome kit providing detailed information on their respective chronic condition, 

and quarterly educational newsletters. These recipients also have access to a 24 hour seven 

day-a-week call line that is staffed by licensed medical professionals. High intensity 

patients receive the standard services plus regularly scheduled phone calls from HMC 

nurses who have access to their prescribed plans of care or nationally recognized evidence 

based guidelines. The nurses use this information to assist the recipients in managing their 

illnesses. As part ofthis process, high intensity open recipients complete annual health 

7 
Since the data for this study were obtained, the contractor that operates the Healthy Returns™ Program for 

the Virginia Department of Medical Assistance Services changed its classification ofDM participants. 
Participants are now classified as high, moderate, and low risk (HMC, 2008). However, this classification 
was not used in the present study because the data were collected under the previous administrative structure. 
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Enrolling a majority of recipients into the DM program prevents the use of a 

control group composed of non-participants. Linden, Adams, and Roberts (2005) argue 

that this issue can be addressed by treating high intensity DM patients as the treatment 

group and standard intensity patients as the control group. The rationale for this 

comparison is that the high intensity patients actively receive the intervention, while the 

standard intensity patients do not (Linden et al., 2005). As a result, the treatment group for 

this study consisted of the high intensity diabetes patients, while the control group 

consisted of the standard intensity patients. 

Data Source 

The analysis data came from the Virginia Medicaid Management Information 

System (VaMMIS) and consisted ofrecipient and paid claims records. VaMMIS is the 

Virginia Department of Medical Assistance Services' (DMAS) administrative database 

that is used to perform both recipient and provider eligibility/enrollment as well as 

provider payment functions (i.e., providers are physicians, hospitals, clinics, etc. that 

participate in the Virginia Medicaid program). All Medicaid records within VaMMIS are 

maintained as SAS files; however, the data obtained for this study were analyzed using 

SAS, SPSS, and ST AT A statistical programs. 

Because the analysis data contains protected health information (PHI) (i.e., 

recipient names, addresses, social security numbers, and Medicaid identification numbers), 

the researcher was required to enter into a formal written agreement with DMAS as 
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stipulated under the federal Health Insurance Portability and Accountability Act of 1996 

before receiving any Medicaid recipient claims data. Under the agreement, the researcher 

was required to appropriately safeguard all data containing PHI, report to DMAS any 

misuse of PHI data, provide a copy of the study to DMAS, and either return or destroy all 

analysis data upon study completion. 

Variables 

Three outcome variables were examined in the present study: total diabetes costs, 

total emergency department visits, and total hospital stays (Linden & Adams, 2006). 

Predictor variables included actual program participation, gender, age, and a propensity 

score. The rationale for selecting these predictor variables was twofold: 1) they were 

available, and 2) they ( or similar variables) were used in other studies (Christakis et al., 

2004; Linden & Adams, 2006, Afifi et al., 2007). Medicaid claims data were collected for 

the study subjects for the CY 2007 time period and quantitative variables were summed for 

all subjects (i.e., each subject had one total diabetes-related cost number). 

Summary 

The purpose of the present study was to compare ordinary least squares and 

instrumental variables regression using Linden and Adams' (2006) three-digit zip code 

instrument procedure in order to estimate the effects of high intensity participation in the 

Virginia Medicaid Healthy Return?M Disease Management Program. The purpose of the 

comparison was twofold: 1) to test the utility of the zip code instrumental variables 

procedure and 2) to determine which method offered the best solution to issues involving 



www.manaraa.com

selection bias in observational research. Future research implications resulting from the 

analytical findings are discussed in Chapter 5. 
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Chapter 2 

Literature Review 

This chapter provides a context for understanding the importance of the present 

study, the statistical procedures that were used, and the findings and conclusions that 

resulted from the analysis. Studying methods for evaluating disease management 

programs is important because chronic disease represents a serious issue that is facing .the 

U.S. health care system. With more than 90 million Americans suffering from chronic 

illnesses, providing care to these individuals accounts for approximately 75 percent of the 

nation's health care costs, which total more than $1 trillion annually (Centers for Disease 

Control and Prevention [CDC], 2005a). However, chronic disease patients often receive 

inadequate care due to a variety of factors including the prevalence of the diseases among 

low-income people and the substantial amount of resources that are required to manage the 

conditions (Lohr, Keeler, Calabro, & Brook, 1986; Bodenheimer, 2000; Center on an 

Aging Society, 2004). 

Since the early 1990s, disease management (DM) has been promoted as a 

mechanism for improving quality of care for chronic disease patients, while reducing 

health care costs. In fact, the disease management industry has actively promoted its 

ability to achieve these ends (Bodenheimer, 2000). Even though millions of individuals 

currently receive services through DM programs, little evidence exists on the cost 

effectiveness of disease management or on its ability to improve patient health outcomes 

(Linden, 2006). These shortcomings may stem from the influence of two factors: 1) the 

availability of data for evaluating DM program effectiveness and 2) the use of weak 
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observational designs that are subject to internal validity threats such as selection bias 

(Linden & Adams, 2006, Ofman et al., 2004). 

The purpose of this study was to examine the utility of an econometric procedure 

proposed by Linden and Adams (2006) for evaluating disease management program 

effectiveness using data collected on a group of diabetes OM patients. The authors argue 

that the method is appropriate for OM evaluations because it can reduce the influence of 

selection bias. Additional information on disease management, patient self-management 

education and self-efficacy theory, diabetes-related disease management evaluations, and 

the statistical analyses examined in the present study are provided in the following 

sections. 

The literature reviewed in this study was identified through several avenues. First, 

the instrumental variables (IV) regression references used by Linden and Adams (2006) 

were obtained. Second, searches for key phrases such as disease management, diabetes 

disease management, disease management evaluation, instrumental variables regression, 

instrumental variables regression and disease management evaluation, instrumental 

variables regression and selection bias, selection bias models, self-efficacy theory and 

disease management, propensity scores, and observational research were performed on the 

MEOLINE/PubMed, Psychinfo, Social Sciences Index, and the Cumulative Index to 

Nursing and Allied Health search engines available through the Virginia Commonwealth 

University library. Additional information on the study topic was identified in research 

design and regression/econometrics textbooks. 
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Overview of Disease Management 

Disease management is a coordinated intervention and communication system for 

individuals with chronic conditions that can be managed effectively through patient self­

management efforts (Linden & Adams, 2006). While DM programs were initially 

implemented by pharmaceutical companies, most OM services are currently provided by 

disease management companies that sell their services to health maintenance organizations 

(HMOs), large companies, and public entities such as Medicaid (Bodenheimer, 2000). 

This section provides information on disease management, state Medicaid agencies' 

involvement in disease management activities, and the Virginia Healthy Returns'M 
Disease 

Management Program. 

Disease Management 

Disease management is a population-based approach to providing health care 

services to individuals suffering from chronic illnesses. Population-based means that DM 

applies to all eligible recipients enrolled in a health care program offering these services. 

Generally, the eligible beneficiaries are identified through a predictive modeling analysis 

of their medical claims history. The claims analysis is used to evaluate recipients' support 

needs and to stratify them into high and standard risk levels. DM has evolved from a 

system that typically focused on opt-in recruitment, where individuals with a chronic 

condition were invited to participate, to opt-out care where all individuals with a chronic 

condition are automatically enrolled unless they specifically request to be excluded (Foote, 

2003). 
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Under the disease management paradigm, patients are viewed as individuals who 

receive consistent medical care from the same providers over the course of their disease 

rather than as individuals who only receive discrete or fragmentary medical care. Disease 

management is suitable for chronic illnesses that have large research bases. Due to the 

amount of information that exists on these diseases, it is relatively easy for health care 

providers to develop evidence-based treatment protocols and to identify and measure 

appropriate evaluation outcomes. For these reasons, disease management programs are 

often developed around conditions such as diabetes, heart disease, cancer, asthma, 

hypertension, AIDS, angina, and kidney disease (Hunter & Fairfield, 1997). 

Disease management generally consists of six main components: 1) population 

identification processes, 2) evidence-based practice guidelines, 3) collaborative practice 

models, 4) patient self-management education, 5) process and outcome measurement, and 

6) routine reporting and feedback between patients, providers, and health plans. 

Population identification involves identifying a group of patients with a specific disease 

and then enrolling those individuals into the DM program. Identification is often 

accomplished through predictive modeling that uses demographic, health care usage, and 

expenditure variables to identify patients who are most likely to benefit from program 

participation. Evidence-based practice guidelines consist of providing participating 

physicians with disease-specific treatment standards to ensure that they provide patients 

with consistent care based on the latest clinical evidence guidelines. Collaborative practice 

involves assembling a multidisciplinary health care team (physicians, nurses, pharmacists, 
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dieticians, etc.) to provide comprehensive health care services to DM patients (Center on 

an Aging Society, 2004). 

Patient education is based on the concept that educated patients receive better care 

because they are more knowledgeable about their conditions. Appointment reminders, 24-

hour call centers, home visits, and counseling are examples of services used to educate 

patients about their illnesses. Process and outcome measurement must be established prior 

to DM program implementation. It involves measuring variables, such as health care 

expenditures, patient satisfaction, and health care service usage, to evaluate the impact of 

the DM program. Finally, routine reporting and feedback consists of periodic 

communication between patients, physicians, and other multidisciplinary health care team 

members to ensure that patients are properly managing their conditions and receiving 

appropriate levels of care (Center on an Aging Society, 2004). 

Because data on diabetes patients were analyzed in the present study, an example of 

a hypothetical diabetes DM program is presented to illustrate how disease management 

works. Diabetes is a disease characterized by high levels of blood glucose (or sugar) that 

occur when individuals are unable to regulate their insulin production (CDC, 2005b ). As a 

result, diabetics must monitor their blood glucose and may take insulin or other drugs to 

control their conditions. Failure to monitor blood sugar levels can have serious 

consequences for diabetics, including blindness, limb amputations, stroke, or kidney 

disease. Thus, patient self-management plays a vital role in controlling diabetes, which 

makes it an ideal illness for inclusion in a disease management program (Congressional 

Budget Office, 2004 ). 



www.manaraa.com

32 

A diabetes DM program may work by targeting resources toward improving 

process outcomes for the enrolled population. For example, a diabetes program may focus 

on increasing the number of patients who receive regular blood pressure screenings, annual 

foot and eye exams, annual cholesterol tests, annual kidney function tests, and biannual lab 

tests for hemoglobin Ale, which is a blood sugar monitoring test. The DM program may 

attempt to motivate diabetes patients into complying with these periodic measures in order 

to achieve both short and long-term positive health outcomes. Examples of short-term 

outcomes may include reductions in enrollee hospital stays and emergency department 

visits, while long-term outcomes may include reduced rates of amputations, heart attacks, 

and kidney disease occurrences (Congressional Budget Office, 2004). 

The arguments made by the disease management industry on the benefits of DM 

services may be justified to a degree because some research suggests that these programs 

can both improve patient quality of care and reduce health care costs. For instance, Ofman 

et al. (2004) report that many DM programs are associated with improvements in the 

quality of care received by chronically ill patients, while Gillespie and Rossiter (2003) 

report that DM programs can reduce costs for Medicaid recipients by almost 33 percent 

due to reductions in hospital emergency department and urgent care visits. 

State Medicaid Programs 

Due to disease management's potential for reducing health care costs and 

improving the quality of care for chronically ill patients, many state Medicaid agencies 

have become interested in these services (Gillespie & Rossiter, 2003). Disease 

management appears to be well suited for Medicaid programs because they provide health 
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insurance coverage to individuals who are more likely to be physically disabled and less 

educated than the general population, which are conditions that may contribute to the 

development of chronic disease. In fact, more than 60 percent of all adult Medicaid 

recipients suffer from chronic ailments such as diabetes, hypertension, and asthma. 

Chronically ill Medicaid recipients require more care than their healthier counterparts 

(Williams, 2004). In fact, one study found that average annual health care costs for 

chronically ill Medicaid recipients were approximately $6,672 compared to $432 for 

recipients without these conditions (Williams, 2004). 
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According to some observers, increasing health care expenditures have probably 

been the driving force behind the development of many state Medicaid DM programs 

(Gillespie & Rossiter, 2003). For instance, national Medicaid expenditures increased from 

$205.7 billion to $275.5 billion (or by about 25 percent) between fiscal years 2000 and 

2003 (Holahan & Ghosh, 2005). Many states anticipate that their Medicaid populations 

will increase due to current economic conditions, which will force Medicaid programs to 

compete with other state programs for increasingly limited funding (Gillespie & Rossiter, 

2003). As a result, 42 states have either implemented or are planning to implement DM 

programs along with other initiatives in an effort to be more cost effective (Afifi et al., 

2007). 

In addition to being classified as either opt-in or opt-out, state Medicaid disease 

management programs can generally be grouped into one of three models: pay for 

performance, centers for excellence, or the health outcomes partnership. As described by 

Gillespie and Rossiter (2003), the pay for performance model involves the enlistment of 
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nontraditional providers in the care of patients with diseases such as Alzheimer's, 

HIV/AIDS, schizophrenia, and chronic ear infections. The fees paid to nontraditional 

providers are based on improved patient outcomes or reduced health care costs. 8 

The centers for excellence model focuses on providing services to specific high­

cost, high-volume Medicaid recipients through a network of hospitals, physicians, and 

other health care providers participating in the state Medicaid program. Examples of . 

diseases covered under this model include cystic fibrosis, epilepsy, hemophilia, and sickle 

cell anemia. Medicaid programs using this model are responsible for determining the 

number of centers for excellence that will operate within their states. This model requires 

the centers to have official written documentation on the quality of care that will be 

provided to Medicaid recipients with specific diseases as well as the outcomes that will be 

measured. Once the documentation is developed, the Medicaid agency furnishes a single 

prospective payment to the center to cover the costs for all DM services that are provided 

to Medicaid recipients. The centers are also responsible for reporting health outcome 

improvements to the state Medicaid agencies (Gillespie & Rossiter, 2003). 

Finally, the health outcomes partnership approach is a model typically used to 

provide DM services to fee-for-service (FFS) Medicaid recipients (individuals who are not 

enrolled in a managed care program) who have high-priority diseases such as diabetes, 

asthma, hypertension, congestive heart failure, and chronic obstructive pulmonary disease. 

8 Since 2004, pay for performance (P4P) has evolved in Great Britain and the Unjted States into a model that 

promotes value based health care by paying providers financial incentives for achieving certain clinical 
quality, patient experience, and information technology outcomes (Doran, Fullwood, Gravelle, Reeves, 
Kontopantellis, Hiroeh, & Roland, 2006; Cutler, Palmjeri, Khalsa, & Stebbins, 2007; O'Kane, 2007). 
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Medicaid programs that use this DM model usually provide claims-based feedback reports, 

treatment guidelines, and other support systems to help health care providers better serve 

the Medicaid recipients assigned to them (Gillespie & Rossiter, 2003). The Virginia 

Healthy Returns
sM Disease Management Program is an example of such a model because it 

operates as a partnership between the Department of Medical Assistance Services and a 

private contractor to provide disease management services to FFS Medicaid recipients. 

Virginia Healthy Returns
SM 

Disease Management Program 

The Department of Medical Assistance Services (DMAS) is the state agency 

responsible for administering both the Medicaid Program and the State Children's Health 

Insurance Program (SCHIP) within the Commonwealth of Virginia. Medicaid and SCHIP 

are public insurance programs that provide health care coverage to qualified low-income 

individuals. Both programs are financed using state and federal funds and are administered 

by the state in accordance with rules and regulations promulgated by the federal 

government (DMAS, 2005b ). 

Due to the current popularity surrounding DM programs, coupled with the 

expectation ofreduced health care costs, the General Assembly directed DMAS to develop 

a DM program for FFS Medicaid recipients diagnosed with diabetes, asthma, coronary 

artery disease, or congestive heart failure (DMAS, 2005b ). (Chronic obstructive 

pulmonary disease was included in 2007.) Although not explicitly stated, the intent of the 

General Assembly's directive was to improve health outcomes for Medicaid FFS recipients 

with certain chronic conditions while reducing state Medicaid costs. Examples of health 

outcomes include patient satisfaction with the treatment program, cholesterol testing rate, 
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use of hospital emergency departments for non-emergency care, number of days 

hospitalized, diabetes hemoglobin Ale (blood sugar) testing rate, use of appropriate 

medications, and mortality. 

To solicit proposals from vendors interested in administering a Medicaid DM 

program, DMAS prepared a request for proposals in May 2005 that outlined the program's 

requirements. The agency received four solicitations from interested vendors and spent 

several months reviewing them. DMAS eventually awarded the contract to a local disease 

management vendor on September 22, 2005, and the Virginia Healthy Returns5M Program 

became operational on January 13, 2006. The purpose of the program is to improve health 

outcomes for Medicaid recipients with certain chronic conditions while saving the State 

money by reducing overall health care costs for program participants. It is designed to 

achieve a variety of objectives including an overall reduction in hospital admissions, 

improper use of hospital emergency departments, and medical expenditures for program 

participants, increased participant and provider education on managing chronic conditions, 

and enhanced participant and provider satisfaction with the program (DMAS, 2005a). 

Under the current DM contract, the contractor is required to operate the Healthy 

Returns5M DM Program as a voluntary opt-in program for Medicaid recipients who have 

diabetes, asthma, coronary artery disease, congestive heart failure, or chronic obstructive 

pulmonary disease. The contractor is required to identify recipients with one of the 

chronic conditions through an analysis of Medicaid claims data using a proprietary 

predictive modeling procedure. Once the recipients are identified, the contractor is then 

required to contact them to determine if they are interested in participating. Recipients 
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who are interested are enrolled, while recipients who are not interested are contacted later 

to determine if they have become interested in participating (DMAS, 2005a). However, 

the contractor did not administer the Healthy ReturniM Program as an opt-in program.9 

Instead, it administered the program as opt-out and automatically enrolled recipients once 

they were identified through the claims analysis. 

Healthy ReturniM offers Medicaid recipients three main interventions: care 

management, a 24-hour telephone call center, and use of evidence-based treatment 

protocols. The care management component consists of the following services: 

continuing health status assessments of all program participants, educating patients about 

self-management, monitoring patient compliance with self-management protocols, and 

providing participants with educational materials on their respective chronic conditions. 

Care management services are provided through either telephone calls or in-person visits at 

the participants' residences (DMAS, 2005a). 

The call center component consists of a center with a toll-free telephone number 

that is staffed by licensed medical professionals on a 24-hour, seven day-a-week basis. 

The medical professionals are primarily available to provide participants with referral 

numbers needed to obtain services from specialty providers. They are also available to 

answer any basic health-related questions that the participants may have about their 

respective chronic conditions (DMAS, 2005a). 

Finally, the evidence-based treatment protocol component involves providing the 

primary care providers of the participating Medicaid recipients with evidence-based 

9 
The program has been administered as opt-in since March 2008 (I-IMC, 2008). 
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treatment guidelines that are based on the latest scientific literature and are approved by 

nationally recognized experts. It is anticipated that participating Medicaid recipients will 

experience improved health outcomes because providers will follow the guidelines when 

developing their treatment regimens (DMAS, 2005a). 

The contractor classifies Medicaid recipients with one of the chronic conditions as 

either high intensity open, high intensity on demand, or standard intensity based on their 

predicted risk for incurring future health care costs. When patients are identified as high 

intensity, the contractor contacts them to determine if they want to receive the high 

intensity intervention. Those who agree are classified as high intensity open and receive 

periodic telephone calls, individualized care plans, 24-hour access to program nurses, and 

quarterly mailings of disease-specific information. High intensity recipients who decline 

are classified as on demand and receive periodic educational mailings and have 24-hour 

access to program nurses if they choose to use it (which is not reflected in the claims data). 

Individuals identified as standard intensity are automatically enrolled and also receive the 

periodic mailings and have 24-hour access to program nurses (HMC, 2007). 

Between January and July 2008, 18,166 Virginia Medicaid recipients were enrolled 

in the Healthy ReturniM program. The breakdown for program participation was as 

follows: 10,378 asthma participants, 3,823 diabetes participants, 1,615 coronary artery 

disease participants, 1,478 chronic obstructive pulmonary disease participants, and 872 

heart failure participants (HMC, 2008). The number of participants enrolled in the 

program changes often due to the frequency with which Virginia Medicaid recipients enter 
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and leave the Medicaid program as well as the frequency with which recipients are 

diagnosed with these conditions. 

Patient Self-Management Education and Self-Efficacy Theory 

Chronic diseases affect more than 90 million Americans and account for at least 

half of the nation's total health care costs. The prevalence of chronic illnesses in the US 

population is growing. In fact, it is estimated that these diseases will affect at least half of 

the US population by 2020 (Redman, 2005). 
10 According to Nuovo (2007), the nation's 

health care system is ill prepared to deal with patients who suffer from these illnesses 

because it is heavily oriented toward treating individuals with urgent care needs. Such 

conditions mean that poorly treated chronic diseases usually lead to personal care 

limitations, poor quality of life, premature wage losses, and high mortality before the age 

of 65 for individuals who suffer from them (Marks, Allegrante, & Lorig, 2005). 

Because many chronic disease patients receive inadequate care from their health 

care providers, the responsibility for managing these conditions falls primarily on the 

individuals who suffer from them. Even if the health care system was structured to 

provide better care, chronic disease patients would still be responsible for approximately 

90 percent of the care that is needed to manage their conditions (Suter, Hennessey, 

Harrison, Fagan, Norman, & Suter, 2008). As a result, chronically ill patients are the ones 

who are ultimately responsible for managing their conditions, despite the advice and care 

that they may receive from health care providers. In fact, patients self-manage their 

conditions every day by deciding what foods they will eat, how much they will exercise, if 
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Unfortunately, some patients do not ( or cannot) manage their illnesses as well as others 

(Bodenheimer et al., 2002). 

In response to these realities, the Disease Management Association of America 

(n.d.) recommends that disease management (DM) programs provide patients with self-
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management education services in order to teach them how to effectively manage their 

conditions.
11 

Self-management education services are intended to compliment traditional 

DM patient education services that focus on technical competence and disease-specific 

information by teaching patients problem solving skills (Bodenheimer et al., 2002). In 

particular, self-management education services may teach DM participants techniques for 

dealing with everyday problems such as depression, anger, and fatigue; exercise regimens 

to maintain strength and cardiovascular fitness; appropriate use of prescription 

medications; behavior modification procedures; and strategies for evaluating new 

treatments and decision making (Farrell, Wicks, & Martin, 2004). 

DM self-management education emphasizes enabling patients to use the technical 

information that they learn about their diseases to solve problems that are relevant to the 

daily management of their conditions. The goal of self-management education is to assist 

patients with developing a greater sense of confidence in their ability to live with and 

10 The growth in chronic diseases is due in part to the fact that the baby boomer generation is reaching the 
age of increased chronic disease prevalence (Bodenheimer et al., 2002). 
11 While the Virginia Healthy Return/M Program includes a self-management education component, the 
information presented in this section is not descriptive of that component. Instead, this information is 
intended to illustrate how self-management education and self-efficacy theory are applied in DM programs in 
general. 
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manage their chronic diseases on a daily basis (Nuovo, 2007). Short action plans that are 

similar to New Year's Eve resolutions play a key role in DM self-management education. 

The plans are developed by the patients and propose specific behavior changes that they 

are confident they can achieve. Examples of such behavior changes may include walking a 

certain number of minutes each day or losing a certain amount of weight each week. By 

accomplishing the plans, patients begin to build confidence in their ability to successfully 

manage their diseases through appropriate behavioral modifications (Bodenheimer et al., 

2002; Nuovo, 2007). 

Because DM self-management education seeks to instill confidence in patients to 

make life-long behavioral changes, self-efficacy theory plays a central role in these 

interventions (Allen, Iezzoni, Huang, Huang, & Leveille, 2008). Self-efficacy, which is 

based on social learning theory, is viewed as fundamental to successful behavioral change. 

It refers to the level of confidence that individuals have in their ability to perform specific 

tasks needed to achieve desired goals or outcomes (Clark & Dodge, 1999; Marks et al., 

2005). 

Self-efficacy results from the interaction of four sources of information: 

performance attainment, vicarious experiences, verbal persuasion, and physiological states. 

Performance attainment exerts the strongest influence on self-efficacy because it concerns 

the successful completion of a task. Vicarious experiences exert the second strongest 

influence on self-efficacy and occur when patients gain confidence in their ability through 

the successes and failures of others who were confronted by similar challenges. Verbal 

persuasion is the third influence and manifests itself through reassuring words and praises 
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that allow individuals to feel confident in their ability to succeed. Finally, physiological 

states represent the actual senses that patients feel when they experience success or failure 

(Wolf, 2006). When successfully implemented, self-efficacy can exert a powerful 

influence in how individuals with chronic illnesses respond to their attempts to achieve 

appropriate disease management behavior. 

Chronically ill individuals develop self-efficacy when they successfully achieve 

personal goals such as performing a desired level of physical activity or reducing the 

amount of fast foods they consume. By successfully achieving personal goals, the patients 

become more confident in their ability to perform the same behaviors again. This in turn 

increases the likelihood that they will repeat those behaviors (Clark and Dodge, 1999). 

This is the end state that DM self-management education seeks to instill in patients through 

the use of action plans. The ultimate goal of the plans is not so much to ensure that 

patients undertake difficult major life-long behavioral changes, but rather to ensure that 

patients identify and undertake simple easy to complete tasks that will eventually lead to 

these major changes. 

Promoting self-efficacy is thus a critical issue for DM self-management 

interventions. In fact, research suggests that favorable self-efficacy beliefs influence 

depression, disability, medication use, diet, weight loss, and self-care behaviors (i.e., 

receiving the recommended number of blood glucose tests or cholesterol tests in a year) 

among chronically ill individuals (Marks et al., 2005). Moreover, research also indicates 

that DM self-management programs promoting self-efficacy can reduce health care costs 

and improve outcomes for chronic disease populations (Farrell et al., 2004). 
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While self-efficacy provides an important theoretical framework for understanding 

how DM interventions work, readers should note that it was not the central theme in the 

present study, which focused on examining statistical methodologies. However, self­

efficacy theory could be used to guide DM evaluations. For instance, Lorig et al. (2001) 

evaluated the effects of a DM intervention that promoted self-management education and 

self-efficacy on four outcomes: health behavior, self-efficacy, health status, and health 

utilization. The researchers found that the intervention was associated with statistically 

significant improvements in health status, health behavior, and self-efficacy as well as a 

statistically significant decrease in health utilizations. Sui et al. (2007) also evaluated the 

effects of a self-efficacy based DM program in a Chinese population on various outcomes 

including self-management behavior, self-efficacy, coping strategies, and health outcomes. 

They found that participation in a DM program that promoted self-management education 

was associated with statistically significant increases in self-efficacy, coping strategies, and 

health outcomes. 

Diabetes-Related Disease Management Evaluations 

While the Virginia Healthy ReturniM Disease Management Program currently 

covers five chronic diseases, the present study only examined data on diabetic Medicaid 

recipients. Diabetes was selected because it is important for policymakers to understand 

how disease management effects participants who suffer from this disease because it is a 

serious condition that has reached epidemic proportions, affecting approximately 18 

million Americans (Shojania, Ranji, McDonald, Grimshaw, Sundaram, Rushakoff, & 

Owens, 2006; Choe et al., 2005). Diabetes is the fifth leading cause of death in the country 
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and contributes to morbidity by placing people at increased risks for heart disease, 

blindness, and other chronic conditions. Substantial costs are also associated with 

diabetes. For instance, it is estimated that diabetes cost the nation approximately $132 

billion in health care expenditures and lost productivity in 2002 (American Diabetes 

Association, 2003). Diabetes places substantial clinical and economic burdens on 

American society (Knight, Badamgarav, Henning, Hasselblad, Gano, Ofman, & 

Weingarten, 2005), but studies suggest that self-management services such as intensive 

glucose control can substantially reduce diabetes complications (Rothman & Elasy, 2005). 

For these reasons, it is important to study methods that can be used to evaluate the 

effectiveness of diabetes-related DM interventions. 

The literature review is not limited to evaluations of specific diabetes DM 

programs. Instead, it includes evaluations of both diabetes specific and related DM 

programs and services to develop an understanding of the research designs and statistical 

methods that have been used to evaluate this topic. A variety of designs and statistical 

procedures have been employed. However, only two studies were identified that used 

statistical methods similar to the ones that were used in this study. While the studies 

tended to find that diabetes DM produced positive outcomes for patients, they encountered 

various methodological shortcomings that limited their usefulness. Additional information 

on the reviewed diabetes DM studies is provided in the subsections below. 

Experimental Designs 

The experimental design with random assignment of subjects to treatment and 

control groups is considered the gold-standard in research and program evaluation studies. 
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Random assignment reduces the influence of selection bias and other internal validity 

threats by giving each subject in the population of interest an equal chance of being 

included in the study groups. However, implementing experimental designs can be 

difficult unless they are conducted in controlled settings (Linden et al., 2005). 

Five diabetes-related DM evaluations using experimental designs were identified in 

the literature review. The statistical procedures used in these studies come from the 

generalized linear model (GLM), which provides the foundation for most of the statistical 

analyses performed by social science researchers. The GLM underlies statistical 

procedures such as the !-test, analysis of variance (ANOV A), analysis of covariance 

(ANCOV A), regression analysis, factor analysis, cluster analysis, and discriminant 

function analysis. The GLM is important because it allows researchers to summarize a 

variety of outcomes. However, model specification is a major limitation faced by 

researchers who use the GLM because they must specify statistical models that best 

summarize their data. If important variables are not included in the models, then the 

parameter coefficients will be biased, which will result in statistical equations that do not 

correctly describe the data (Trochim, 2005). 

GLM procedures used in the reviewed studies included !-tests, ANOVAs, 

regression analyses ( ordinary least squares, logistic, and Poisson), and generalized 

estimating equations (GEE). GEE is a specialized regression procedure that is used to 

analyze longitudinal and other correlated data, especially when the outcomes are binary or 

count variables (Hanley, Negassa, Edwards, & Forrester, 2003). Odegard, Goo, Hummel, 

Williams, and Gray (2005) and Meigs et al. (2003) used !-tests and GEE procedures to 
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evaluate the effectiveness of a pharmacist intervention on diabetes self-management, and 

to test the effects of a web-based decision support tool to improve the management of 

diabetes patients using evidence-based treatment protocols, respectively. Outcome 

variables examined included hemoglobin Ale tests (used to monitor blood sugar levels), 

use of appropriate diabetes control medications, cholesterol tests, blood pressure, and eye 

and foot examinations. 

Odegard et al. (2005) found that the pharmacist intervention did not significantly 

improve A 1 c test adherence for the treatment group and that no significant differences 

existed between the study groups on the use of appropriate medications. Meigs et al. 

(2003) concluded that the web-based decision support tool for diabetes management 

appeared to have the potential to improve evidence-based care of diabetes patients. 

However, both studies had limitations that may influence the usefulness of their results. 

For instance, Odegard et al. (2005) reported that their results may be influenced by 

regression to the mean because they specifically focused on diabetes patients with poor 

self-management skills. In addition, they randomized subjects within clinics as opposed to 

randomly selecting clinics for the study. As a result, providers who participated in the 

experiment could have provided services to both treatment and control subjects that may 

have caused treatment diffusion (i.e., treatment effects being spread to control group 

members) (McMillan & Schumacher, 2006). 

The study by Meigs et al. (2003) also had several limitations. In particular, it was 

plagued by incomplete documentation that may have resulted in lower rates of patient 

compliance for some diabetes care activities used as outcome variables. Meigs et al. 
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(2003) also reported that some participating providers did not consistently use the web-

based tool as intended when treating diabetes patients, which may have further skewed 

their results. 

The GLM procedures used by Landon et al. (2007), Choe et al. (2005), and Sadur, 

Moline, Costa, Micalik, Mendlowitz, Roller, Watson, Swain, Selby, and Javorski (1999) 

included t-tests, and ordinary least squares (OLS), logistic, and Poisson regression 

analyses. Landen et al. (2007) used OLS and logistic regression to examine changes in 

disease-specific quality of care indicators for 9,658 randomly selected diabetes, asthma, 

and hypertension patients who received care at 64 ( 44 treatment and 20 control) 

community health centers. Diabetes-related indicators that served as outcome variables 

included Ale tests, cholesterol tests, and blood pressure. Choe et al. (2005) used OLS and 

logistic regression to examine treatment and control group differences in an evaluation of 

the effectiveness of pharmacist-provided DM services on blood sugar and preventive care 

measures for a group of randomly assigned diabetes patients. Outcome variables included 

Ale tests, eye examinations, and urine microalburnin tests. Finally, Sadur et al. (1999) 

used t-tests and Poisson regression to examine differences between the treatment and 

control groups on various outcome measures including Ale tests, self-reported measures of 

self care practices, satisfaction with general medical care, and health utilizations (e.g., 

number of visits to hospital emergency departments and visits to physician offices). 

Landon et al. (2007) found that the diabetes and asthma patients who received care 

from the community health centers demonstrated greater improvements in the monitoring 

and treatment of their conditions, while hypertension patients did not. Choe et al. (2005) 
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found that proactive diabetes case management provided by a pharmacist substantially 

improved glycemic control for diabetes patients, and Sadur et al. (1999) determined that 

DM services improved glycemic control, self-efficacy, and patient satisfaction for diabetes 

patients, while reducing their health care utilization. 

However, these studies also encountered limitations. Landon et al. (2007) reported 

that they had to rely on matching treatment and control subjects because they were unable 

to perform a pure randomized trial where subjects were randomly assigned to study 

groups. Thus, their analysis may not have accounted for all potential confounding 

variables, which could bias their regression models. They also reported that their results 

may have been overstated because some of the community health centers may not have 

fully implemented the intervention. Choe et al. (2005) reported that the generalizability of 

their study was hampered due to its small scope (it only involved 80 patients at one site), 

while Sadur et al. (1999) reported that they failed to obtain complete information on all 

study subjects, which could influence the accuracy of their findings. 

Quasi-Experimental Designs 

According to Trochim (2005), quasi-experimental designs are similar to 

experimental designs, but lack random assignment of subjects to treatment and control 

groups. These designs are more commonly used than experimental designs due to the 

difficulties that researchers encounter when implementing experimental studies (Trochim, 

2005). Six quasi-experimental studies were identified in the literature review. The studies 

employed a variety of statistical procedures to examine the effects of DM interventions on 
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various outcome variables. While the studies tended to find that diabetes DM produced 

positive results, limitations were present that may reduce their usefulness. 

Two studies were identified that used GLM procedures similar to instrumental 

variables (IV) regression. In the first study, Wendel and Dumitras (2005) tested the 

feasibility of using a two-part selection bias regression model for DM program evaluations. 

The model was developed by James Heckman (an econometrician) in the 1970s to control 

for selection bias in observational studies. In the first step, probit regression is used to 

create a selection model that predicts the probability of program participation using 

observable patient characteristics. The residuals from this equation are then used to create 

the Inverse Mills Ratio (IMR), which represents the predicted probability of program 

enrollment. In the second step, linear or probit regression is used to produce unbiased 

estimates of the impact of program participation on the outcome variable, while controlling 

for the IMR and other observed confounders (Ettner, 2004; Sales, Plomondon, Magid, 

Spertus, & Rumsfeld, 2004). The regression steps are performed simultaneously. The 

Heckman method adjusts for potential selection bias by including the IMR as a variable in 

the outcome equation in order to model the correlation between the treatment variable and 

the error term (Ettner, 2004). 

To perform the study, Wendel and Dumitras (2005) obtained administrative data 

from a managed care diabetes DM program. Because they were interested in assessing the 

change in health care costs generated by DM program participation, they used costs as the 

outcome variable. Their analysis found that DM program participation had a statistically 

significant effect on the outcome variable. Based on the analysis, the authors concluded 
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that the Heckman method offered a viable means of evaluating a DM program using 

observational data. While Wendel and Dumitras (2005) did not report any study 

limitations, their analysis may be limited because the Heckman method is highly sensitive 

to model specification. As a result, they could have calculated biased (e.g., incorrect) 

estimates if important variables related to either recipients' participation decisions or the 

outcome variable were omitted (Sales et al., 2004). 

In the second study, Afifi et al. (2007) used a variant of the two-part model to 

evaluate the effects of the Florida Medicaid disease management program on four 

utilization outcomes: number of annual inpatient hospital stays, emergency department 

visits, inpatient days, and outpatient visits. The first part of their modeling procedure used 

logistic regression to predict whether a recipient had any utilization, while the second part 

applied only to recipients who utilized one of the four health care services. OLS regression 

was used in the second stage to model the logarithm of the annualized utilization variables. 

According to Mullahy (1998), the two-part model is an appropriate procedure to use in 

health outcomes research settings (such as disease management) where information may 

only be available on subjects who utilized particular services. 

As part of the analysis, Afifi et al. (2007) also calculated propensity scores for the 

treatment and control group subjects for use as a covariate in the regression analysis. The 

propensity score (which is estimated using logistic regression) is a method that corrects for 

selection bias. It differs from IV regression in that it can only control for bias resulting 

from observed variables, while IV corrects for bias due to unobserved variables. The 

propensity-score method allows researchers to match subjects on the observed covariates 
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that may account for bias in the sample (Schneider, Carnoy, Kilpatrick, Schmidt, & 

Shavelson, 2007). 

Based on their analysis, Afifi et al. (2007) found that the Florida OM program 

appeared effective at reducing hospital inpatient and emergency department visits for 

diabetes, congestive heart failure, and asthma patients, but not for hypertension patients. 

They concluded that some cost savings might be associated with the OM program because 

hospital stays and emergency department visits are two of the most expensive components 

of care. Their analysis further revealed that OM services do not appear to be effective until 

after recipients have been exposed to the treatment for some time. However, Afifi et al. 

(2007) reported that their analysis could have been hampered by selection bias because the 

propensity score procedure does not control for unobserved confounding variables. If any 

of the variables in their regression models were associated with unobserved confounders, 

then their parameter estimates could be biased. 

Another Medicaid study identified during the literature review involves an 

evaluation of a Virginia Medicaid disease management program. Zhang, Wan, Rossiter, 

Murawski, and Patel (2008) employed GLM procedures to evaluate a OM program that 

was operated by DMAS prior to the implementation of the Healthy Return�M OM 

Program. This program was known as the Disease State Management (DSM) Program and 

it operated between 1999 and 2001. Chronic diseases covered under the DSM Program 

included diabetes, hypertension/congestive heart failure, depression, peptic ulcer disease, 

and asthma/chronic obstructive pulmonary disease. Zhang et al. (2008) used analysis of 

variance and covariance procedures to evaluate the effects of the program on several 
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outcome variables including drug compliance, quality of life, hospitalizations, physician 

office visits, and emergency department visits. They also performed a cost savings 

analysis as part of their study. Their analysis indicated that the DSM program significantly 

improved participants' drug compliance and quality of life, while reducing 

hospitalizations, physician office visits, and emergency department visits. They also 

estimated that the program saved the Commonwealth of Virginia approximately $3 

million. However, they reported that their analysis may be influenced by two limitations: 

selection bias because participants were allowed to self-select into the study groups and 

attrition because many of the control subjects left during the study. 

The studies by Berg and Wadhwa (2007), Christakis et al. (2004), and Villagra and 

Ahmed (2004) also used GLM procedures to evaluate diabetes DM effects. For instance, 

Berg and Wadhwa (2007) evaluated a telephonic DM program for elderly diabetes patients 

using t-tests and propensity scores. Outcome variables consisted of utilization measures 

including number of hospitalizations, emergency department visits, and physician visits. 

In an unpublished study, Christakis et al. (2004) used OLS, logistic, and Poisson regression 

to evaluate Washington State's Medicaid DM program for patients with kidney disease, 

asthma, congestive heart failure, and diabetes. While outcome variables were examined 

for all four diseases, the diabetes specific outcomes were emergency department visits, 

number of hospitalizations, length of hospital stays, A le tests, and eye tests. 

Finally, Villagra and Ahmed (2004) used t-tests and an intention-to-treat analysis to 

evaluate the first year effects of a multistate diabetes DM program on several outcome 

variables including health care costs, emergency department visits, and number of days 
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hospitalized. Because the OM programs were phased in over a three-year period, 

researchers used the sites where the diabetes OM programs operated as historical controls. 

Berg and W adhwa (2007) found significant differences between the treatment and 

control groups on health care service utilizations, prescription drugs, and diabetes testing 

procedures. They concluded that a commercially delivered diabetes OM program could 

significantly reduce hospitalizations, while increasing the use of diabetes related 

prescription drugs and clinical procedures. Their study may be limited because they did 

not have complete information on the control group members, which was needed in the 

analysis. 

Christakis et al. (2004) also found that OM services were associated with improved 

care for Medicaid patients with kidney disease, asthma, and diabetes, but not for patients 

with hypertension. They reported that their findings might be hampered by selection bias 

because patients were not randomized into the OM program. Finally, Villagra and Ahmed 

(2004) determined that the overall costs of care were significantly lower for the OM 

subjects in their study. They also determined that quality of care (e.g., Ale testing, 

diabetes control drugs, and eye exams) was significantly better for the OM subjects. 

Villagra and Ahmed (2004) reported that their study was limited by its design, which may 

not have controlled for all biases and confounders that could influence the results, and that 

the data were susceptible to regression to the mean. 

Non-Experimental Designs 

Non-experimental designs are used when researchers are unable to manipulate 

variables, or are interested in either describing various phenomena or examining 
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relationships. Examples include descriptive, relational ( comparative and correlational), 

and causal-comparative designs (McMillan & Schumacher, 2006). Five non-experimental 

studies were identified for review. These studies also tended to find that diabetes DM 

interventions produced positive results for participants. The studies employed GLM 

procedures such as t-tests, ANOVAs, generalized estimating equations (GEE), mixed­

methods regression models, and logistic regression models. In addition, one study 

performed a trend line analysis, while another study used a cost-comparison approach to 

evaluate a DM program. These studies are discussed in more detail below. 

Morisky, Kominski, Afifi, and Kotlerman (2008) used both generalized estimating 

equations and linear mixed-method regression models to estimate the effects of the Florida 

Medicaid DM program on behavioral health and physiological limitations for participants 

with congestive heart failure, hypertension, diabetes, and asthma. Their outcome variables 

included mental and physical health assessment scores, medication compliance scores, 

blood glucose levels, and cholesterol scores. Coberly, McGinnis, Orr, Coberly, Hobgood, 

Hamar, Gandy, Pope, Hudson, Hara, Shurney, Clarke, Crawford, and Goldfarb (2007) 

performed a trend line analysis of a DM program to determine the relationship between 

DM telephonic contact and increased clinical testing rates. The outcome variables were 

Ale and cholesterol testing rates for patients during their first 12 months of participation in 

a diabetes DM program. Mangione et al. (2006) used mix-effects regression models to 

determine whether DM services provided by physician groups are associated with 

improved diabetes care processes and control of diabetes outcomes. Their main outcome 

variables included blood pressure, Ale tests, and cholesterol tests. 
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Krein and Klamerus (2000) used logistic regression to determine if patients who 

were enrolled in the Michigan Diabetes Outreach Network program received 

recommended diabetes-level care. Their main outcome variable was whether or not the 

patients received the recommended level of diabetes care. Finally, Fireman et al. (2004) 

analyzed financial data from a commercial DM program to determine if it had produced 

any cost savings. Variables examined in the study included number of emergency 

department visits, hospital admissions, hospital days, and clinic visits. 
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Four of the reviewed studies concluded that DM services were beneficial. Morisky 

et al. (2008) found that participation in the DM program was associated with increased 

health behaviors conducive to better health outcomes such as a reduced rate of smoking 

and adherence to medical regimes for hypertension and diabetes patients. Coberly et al. 

(2007) found a positive relationship between the frequency of telephone contact and 

increased Ale and cholesterol testing among diabetes DM patients. Mangione et al. (2006) 

determined that diabetes DM strategies were associated with better diabetes care, while 

Krein and Klamerus (2000) concluded that diabetes patients were more likely to receive 

Ale and eye exams after participating in the program. However, Fireman et al. (2004) 

reported that their analysis did not reveal any evidence of cost savings. Thus, they 

concluded that the rationale for DM programs should rest on effectiveness and value rather 

than the potential to reduce costs. 

Despite these findings, however, the five studies also had limitations. For example, 

Morisky et al. (2008) used data that was subject to social desirability bias because it was 

collected through self-reported behavioral assessments. Coberley et al. (2007) reported 
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that they used metrics that were less comprehensive than those recommended by national 

guidelines for evaluating health outcomes. Moreover, they relied upon administrative 

claims data as opposed to medical records (which are preferred) for measuring clinical 

testing outcomes. Thus, their findings may be distorted. Mangione et al. (2006) reported 

that their statistical analysis was not sensitive enough to detect modest associations, which 

may have prevented them from detecting treatment effects on all outcome variables. 

Krein and Klamerus (2000) indicated that their study was unable to determine how 

much of the increase in the recommended level of diabetes care received by patients was 

attributable to the program and not to other factors. They further reported that their study 

was plagued by missing data. Finally, Fireman et al. (2004) reported that their findings 

may be biased because they did not have access to a control group composed of similar 

chronic disease patients which was needed in order to make meaningful comparisons. 

They also indicated that they lacked data on their subjects' functional status and work 

productivity, which would have allowed them to determine if these factors had improved 

over time while the subjects were enrolled in the DM program. 

Conclusions 

The primary purpose of this section was twofold: 1) to identify some of the 

designs, statistical procedures, and variables that researchers have used to evaluate DM 

programs, and 2) to determine if any researchers have employed IV or similar regression 

procedures to evaluate these programs. By addressing these purposes, additional 

justification for the analytical procedures that were employed in the present study can be 

obtained. 
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This review found that various experimental, quasi-experimental, and non-

experimental designs were employed for the evaluations, and that most of the statistical 

procedures used came from the GLM. The review also revealed that some researchers 

have used the propensity score method to control for selection bias when evaluating DM 

programs. In addition, the review revealed that while many studies use clinical outcome 

measures, such as Ale and cholesterol testing rates, a number also use cost and utilization 

measures, such as hospital emergency department visits, as outcome variables. Finally, the 

review found that no evaluations were performed using IV regression, which is not 

surprising because this procedure has only obtained limited popularity among health 

services researchers (Newhouse, 2005). However, IV regression, which will be discussed 

further in the next section, is an appropriate procedure to use when analyzing data 

influenced by selection bias (Basu, Heckman, Navarro-Lozano, & Urzua, 2007). 

While the primary justification for the analytical procedures that were used in this 

study come from Linden and Adams (2006), the reviewed articles provide additional 

justification for the study's design, statistical procedures, and outcome variables. In 

particular, the analysis was performed using a quasi-experimental design with treatment 

and control groups ( e.g. Afifi et al., 2007), and program effects were estimated using the 

propensity score method and OLS and IV regression ( e.g., Landon et al., 2007 and Afifi et 

al., 2007) to control for selection bias due to observed and unobserved confounders. The 

outcome variables were total diabetes costs, hospital emergency department visits, and 

hospitalizations for a 12-month time period (Berg & Wadhwa, 2007, Christakis, et al., 



www.manaraa.com

58 

2004, and Villagra & Ahmed, 2004). The reviewed articles provide the justification for the 

study's design, statistical procedures, and outcome variables. 

Statistical Models for Program Evaluation 

The present study examined two methods that could be used to evaluate the effects 

of participation in a disease management program for Medicaid diabetes recipients. 

Because the analysis data came from administrative claims, this study was conducted as an 

observational (or quasi-experimental) study. According to Rosenbaum (1995), an 

observational study is an empirical investigation that seeks to derive cause-and-effect 

relationships under situations where controlled experimentation is not feasible. 

Observational studies focus on treatments, interventions, and public policies and their 

associated effects. Non-experimental studies that lack these characteristics are not 

considered observational (Rosenbaum, 1995). 

In experiments, researchers randomly assign subjects to treatments. Subjects who 

receive the treatment form the experimental (i.e., program, intervention, or treatment) 

group, while subjects who do not receive the treatment form the control group. 

Randomization ensures that the treatment and control subjects are comparable. However, 

researchers conducting observational studies cannot control subject assignments. Because 

researchers lack this ability, systematic differences (i.e., selection bias) may exist among 

the study subjects (McMillan & Schumacher, 2006). Comparing outcomes across subjects 

in an observational study may subsequently confound the effects of the treatment with the 

effects of the subjects' preexisting differences. More specifically, the estimated treatment 

effect may be biased. Ordinary least squares (OLS) and instrumental variables (IV) 
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regression are two generalized linear modeling procedures that can be used in 

observational studies to derive unbiased treatment effect estimates (Haro, Kontodimas, 

Negrin, Ratcliffe, Suarez, & Windmeijer, 2006). Additional information on these 

procedures is provided in the following subsections. 

Ordinary Least Squares Regression 
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OLS regression is a widely recognized statistical methodology that involves 

relating a quantitative outcome variable to one or more quantitative and/or qualitative 

predictor variables. The end result is a mathematical model that predicts the outcome 

variable for the given set of predictors (Mendenhall & Sinich, 2003). Equation 1 depicts a 

bivariate (or simple) regression model. 

[1] Y; = a+�X;+ u; 

In this equation, Y is the outcome variable (annual diabetes costs), Xis the predictor 

variable (high intensity open DM program participation coded as 1 = participant and O = 

non-participant), i refers to the ith individual (any individual in the study), a is the Y 

intercept ( or the value of Y when X = 0), � is the slope of the regression line (the change in 

Y when X increases by one, or in causal terms, the effect ofX on Y), and u is the 

disturbance or error term. This term is assumed to have a mean of zero and to be randomly 

distributed across study subjects (Mohr, 1995). In a regression model, only one a is 

calculated; however, a � (parameter estimate or coefficient) is calculated for each predictor 

variable that is included. 

When a simple regression analysis is used to model the effects of a treatment ( or 

program), the two regression parameters- a and� - have special meanings. For a 
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treatment variable with only two categories, the regression line (P) will always pass 

through the mean ofY for each category of the predictor. If the treatment variable equals 

zero, then a represents the mean outcome value for the control group. If the treatment 

variable equals one, then a + PX; represents the mean outcome variable for the treatment 

group. Because p denotes the causal effect of the treatment variable, X, on Y, pis the 

treatment effect (subject to selection and other internal validity threats). The discovery of 

p is the purpose of a summative program evaluation study. Moreover, because p is defined 

as the change in Y when it's associated X variable increases by one, pis the mean value of 

the outcome variable for the treatment group minus the mean value of the outcome variable 

for the control group (Mohr, 1995). An example of a bivariate regression is presented 

below in Figure 1. 

The bivariate regression model can be extended by including additional predictors 

(or covariates). When additional variables are included, the procedure is known as 

multiple regression, which is illustrated in Equation 2. 

[2] Y; =a+ P1Xli + P2X2; + ... + PnXn; + U; 

This equation shows that two or more predictors (up to the nth predictor) can be added to 

the model. In a multiple regression model, the ps are interpreted differently than in a 

bivariate model. For instance, P 1 represents the mean change in Y for every one-unit 

increase in its associated X variable, when holding fixed all other predictors in the model. 

The remaining Ps and their respective variables are interpreted similarly (Mendenhall & 

Sincich, 2003). As another example, consider a model that includes two predictors: 

treatment program (coded as 1 = participant and O = non-participant) and age. Then P 1 
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Figure 1: Bivariate Regression 

(J. 

l X X 1 X 

Source: Mohr (199 5) 

(and its respective treatment variable) answers the question, What is the difference in Y 

(e.g., diabetes costs) for subjects in the different study groups who are the same age? 

Specifically, it allows for the determination of the treatment effect given the age of the 

subjects (Mohr, 1995). 
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Statistical significance tests are performed on the parameter estimates (�s) in the 

regression model to test whether the estimates differ from zero. If the tests are significant, 

then it can be assumed that the estimates differ from zero, which indicates that the 

observed relationship between the predictor and outcome variable is probably not due to 

chance. A statistically significant test for the treatment variable's parameter estimate 

would indicate that the treatment had a significant effect on the outcome variable. 
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The primary function of including additional variables in multiple regression is to 

reduce the influence of imperfect randomization or even the lack of randomization. If 

subjects are not randomized, then the researcher must be concerned about important 

differences that may exist between the treatment and control group subjects, which could 

explain the observed results (Mohr, 1995). Addressing selection bias through OLS 

regression works if the researcher can account for all preexisting group differences that are 

related to the outcome variable. This is difficult to accomplish because program 

participants often differ in a variety of observable and unobservable ways from non­

participants (Weiss, 1998). If the researcher is aware of preexisting differences (and can 

measure them), then they can be controlled by including them as covariates in the 

regression analysis. However, if the researcher is unaware of the preexisting differences 

(or is unable to measure them) then they will not be controlled, which may lead to 

confounding in the data (Wunsch, Linde-Zwirble, & Angus, 2006). 

In regression, observable and unobservable factors that affect the outcome variable 

but are not included in the model represent the error term in the relationship (Wooldridge, 

2006). In observational studies, the error term can include factors such as preexisting 

differences between the treatment and control groups. Selection bias occurs when these 

differences (if correlated with one or more of the predictors and the outcome) are not 

statistically controlled (Salkever, Slade, Karakus, Palmer, & Russo, 2004). In other words, 

selection bias occurs when at least one of the predictors is correlated with the error term 

(Ettner, 2004). One assumption of multiple regression is that the error term has an 

expected (or mean) value of zero given any of the values of the other predictors in the 
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model. Failing to include important variables that are related to the predictors causes this 

assumption to fail, thus producing biased regression results (Wooldridge, 2006). 

OLS regression can be used to estimate treatment effects in observational studies if 

overt selection bias is controlled (Haro, et. al., 2006). However, OLS regression cannot 

effectively address hidden selection bias. When hidden selection bias is a concern, 

researchers typically use other methods to estimate treatment effects such as IV regression 

(Winship & Morgan, 1999). 

Instrumental Variables Regression and Selection Bias 

A structural equation modeling technique known as instrumental variables (IV) 

regression was developed by econometricians in the 1920s to address instances in which 

the OLS predictor(s) are correlated with the error term (Linden & Adams, 2006; 

Newhouse, 2005). IV regression was first used to estimate supply and demand curves, but 

has since been applied to issues involving measurement error and omitted variables bias 

(Schneider et al., 2007). In fact, IV regression is widely used to control for selection bias 

in observational studies (Basu et al., 2007). The popularity of IV regression in 

observational studies stems from its ability to estimate unbiased relationships between 

outcome variables and predictors by purging the predictors of the portion of their variance 

that is not independent of the error term. 

In regression, a predictor variable that is correlated with the error term is known as 

an endogenous variable (Winship & Morgan, 1999). In a program evaluation context 

where hidden selection bias may be suspected ( e.g., a situation where subjects self-selected 

into the program or were otherwise assigned nonrandornly), a good IV would be a variable 
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that is associated with the treatment variable, but is uncorrelated with the omitted variables 

and has no association with the outcome, except through the treatment variable. Because 

the IV is related to the treatment variable, but is uncorrelated with other predictors of the 

outcome variable, the causal effect of the instrument on the outcome is therefore 

proportional to the causal effect of the treatment on the outcome (Schneider et al., 2007). 

Based on this information, an IV must satisfy two assumptions: 1) it is independent 

of the error term in the regression model, and 2) it affects the problematic predictor 

variable (i.e., the treatment variable that is influenced by selection bias), but not the 

outcome. If the first assumption fails (that is, if the IV actually affects the outcome 

directly or if there are no observed variables that do not affect the outcome directly), then 

the results of the IV regression will be biased and the effect of the treatment will be 

unidentified. If the second assumption fails (that is, if the IV's variation does not produce 

much variation in the treatment variable), then the random error term may mask the effect 

of the treatment variable. If this occurs, then IV regression will produce results similar to 

OLS regression. Thus, these two assumptions must be satisfied in order for IV regression 

to produce useful results (Newhouse & McCellan, 1998). Essentially, an IV is a variable 

(or set of variables) (Z) that is correlated with the program variable (X), but not related to 

unobserved confounding variables of the outcome variable (Y). 12 Thus, the IV can only 

impact the outcome variable through the program intervention. This relationship is 

graphically depicted in Figure 2. 

12 
More than one variable can be used as an instrumental variable (IV). When this occurs, the IV can be 

referred to as the set of instruments. 
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Figure 2: Instrumental Variable Estimation 

Program Eligibility (Z)-----... Program Participation (X) 
� 
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Outcome (Y) 
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Somce: Newhouse andMcC!ellan(1998); L:inden and Adams (2006) 
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IV regression is performed using a structural ( or simultaneous) equation modeling 

process known as two-stage least squares (2SLS) regression (Linden & Adams, 2006). In 

the first stage, the instrument ( or set of instruments) and any covariates are used to predict 

the endogenous variable in a regression equation. In the second stage, the outcome 

variable is regressed on the fitted values from the first stage regression plus any covariates. 

If the IV is uncorrelated with the omitted variables, the predicted value of the outcome is 

also uncorrelated with the omitted variables. Thus, the bias in estimating the outcome 

variable from the exclusion of the variables that account for preexisting differences from 

the model is eliminated (Schneider et al., 2007). 

2SLS regression is formally presented in equations 3 and 4. 

[3] X-hat = a0 + a1Z; + v; 

[4] Y = �o + �1X-hat; + l::i 

In equation 3, Z represents the instrument ( or set of instruments) that is used to 

estimate X- hat, which is the predicted value ofX. This value is then used in equation 4 

instead of the actual X variable. It is assumed that Z is a significant predictor of who is 

likely to participant in the program (X- hat). If the actual treatment variable was used 

(indicating if the subjects actually participated), the result would be confounded due to 
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selection bias. Using X - hat given Z allows for an unbiased estimate of the program's 

impact on an outcome because Z predicts X in equation 3, but remains independent of the 

X - Y relationship. In the second stage, IV regression essentially becomes OLS regression 

and its results are interpreted in a similar manner. It is important to note that IV regression 

must be performed using 2SLS. Using OLS twice to estimate each stage results in 

incorrect estimations of the model residual sum of squares and standard errors (Linden & 

Adams, 2006). 

Generally, researchers estimate both OLS and IV regression models and compare 

them using a Hausman specification test to determine whether significant differences exist 

between the models (Ender, n.d., Greene, 2003, Hadley et al., 2003; Baum, 2006). If 

significant differences do exist, then the IV model is normally accepted because the OLS 

estimates are presumed to be biased. If the test is not significant, then the OLS results are 

accepted because this procedure produces more efficient parameter estimates than IV 

regression. This is due to the fact that IV estimates always have larger variances than the 

OLS estimates. In fact, sometimes researchers may even prefer the biased OLS estimates 

if they have smaller mean squared errors compared to the IV estimates (Winship & 

Morgan, 1999). In other words, IV regression does not always offer a good solution to 

selection bias issues in observational studies. 

A number of articles using IV regression to control for selection bias were 

identified in the literature review. Six of these articles are reviewed in this subsection in 

order to provide insights into how these researchers applied IV regression. The researchers 

used a variety of instrumental variables to control for selection bias, some of which were 



www.manaraa.com

67 

based on geographic location. This observation suggests that some research may support 

Linden and Adams' (2006) decision to use three-digit zip codes, which represent large 

geographic areas, as instruments. In addition, some of the researchers indicated that IV 

regression is more suitable for addressing policy questions about the average treatment 

effects of health interventions than clinical questions about the possible effects that certain 

interventions may have on specific patients. Finally, some of the researchers found that IV 

regression offered a suitable solution to selection bias, while others did not. This may be 

due to the fact that finding variables that meet the two IV assumptions can be challenging. 

The article by McCellan, McNeil, and Newhouse (1994) was probably the first 

health services study to use IV regression (McClellan & Newhouse, 2000). The authors 

used differential distances, a geographic location variable, as an instrument to account for 

selection bias in an observational study examining the effect of cardiac catheterization on 

mortality among Medicare patients with acute myocardial infarction (AMI). Specifically, 

they sought to determine if more intensive treatment of AMI in elderly patients reduced 

mortality. The researchers hypothesized that patient location independently affected 

choice of hospitals for AMI procedures. The instrument represented whether or not the 

patients' nearest hospital was a catheterization hospital. It was calculated by subtracting 

the distance between each patient's zip code and the zip code of the hospital where they 

received treatment. The outcome variables examined included mortality within one day, 

mortality within seven days, and mortality within 30 days. They found that treatment at 

high volume AMI hospitals yielded survival benefits for elderly patients (McClellan et al., 

1994). 
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Landrum and Ayanian (2001), Stukel, Fisher, Wennberg, Alter, Gottlieb, and 

Vermeulen (2007), and Basu et al. (2007) also employed geographic location variables as 

instruments in IV regressions. Landrum and Ayanian (2001) used the density of 

cardiologists in a patient's county ofresidence as an instrument to estimate the effect of 

ambulatory specialty care on mortality following myocardial infarction, while Stukel et al. 

(2007) used regional cardiac catheterization rate as an instrument to estimate the effect of 

invasive cardiac management on acute myocardial infraction (AMI) survival. Basu et al. 

(2007) used a regional dummy variable to represent variations in physician practice 

patterns and a continuous variable that represented Medicare physician fee differentials at 

the three-digit zip code level to estimate the effect on five-year medical costs ofbreast­

conserving surgery with radiation therapy compared to mastectomy in patients with breast 

cancer. 

Based on their analysis, Landrum and Ayanian (2001) reported that simple and 

multiple IV regressions indicated that cardiology care was associated with 9.5 and 1.0 

percent reductions in mortality rates, respectively. Stukel et al. (2007) reported that their 

IV analysis showed that cardiac catheterization was associated with a 16 percent reduction 

in mortality, while Basu et al. (2007) reported that breast-conserving surgery with radiation 

therapy was associated with an average cost of$41,493. Landrum and Ayanian (2001) and 

Stukel et al. (2007) both reported that IV regression appeared suitable for answering policy 

questions about the effects of health system factors on patient health outcomes rather than 

clinical questions concerning the effect of a particular medical procedure on specific 

patients. In addition, Basu et al. (2007) indicated that IV regression estimates were 
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Long, Coughlin, and King (2005) also used IV regression to address a policy 

question while controlling for selection bias in a study that estimated the effects of 

Medicaid on access and use of health care services by low-income mothers relative to 

private insurance coverage or no insurance coverage. The authors replaced subjects' actual 

insurance status with a predicted insurance status using four instruments: accessibility of 

private insurance, availability of public coverage, and family and community attitudes 

toward public assistance. They performed the analysis by estimating both OLS and IV 

models. The Hausman test was used to determine whether there was a significant 

difference between the models. They also found that IV regression produced better results 

than OLS regression due to selection bias. Thus, they concluded that the Medicaid 

program improved access to care for low-income mothers. 

Hadley et. al. (2003) had a slightly different experience with OLS and IV 

regression. They used these procedures to estimate the outcomes of three treatments for 

early stage breast cancer in elderly women. Medicare fees, woman's place of residence, 

and geographic areas were used as instruments. The Hausman test was used to determine 

if significant differences existed between the OLS and IV models. Hadley et al. (2003) 

found that the OLS regression results were not significantly different from the IV results. 

They found that the OLS estimates were preferable to the IV estimates because the latter 

were substantially larger and more unstable. Hadley et al. (2003) concluded that whether 

one accepts OLS or IV regression results should depend on three factors: 1) the extent to 
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which observable information can be used as controls in OLS regression, 2) the results of 

statistical tests of the validity of the IV method, and 3) the similarity of the OLS and IV 

results. 

Posner et al. (2002) used the propensity score method and logistic and IV 

regression to determine the effectiveness of screening in the identification of early stage 

breast cancer in elderly women. They also used a geographic location variable, the region 

in which the women lived, as the instrument. Posner et al. found that all three methods 

produced similar results, which they argued helped strengthen the credibility of the logistic 

regression model. They recommended that researchers performing observational studies 

consider the sources of bias that may affect their results and use the propensity score 

method to address overt selection bias and IV regression to control for hidden bias. 

Finally, Malkin, Broder, and Keeler (2000) used IV regression to determine the 

effect of postpartum length of stay on new born readmissions. They used hour of delivery 

and method of delivery as instrumental variables and compared their analysis against 

standard statistical methods (which was probably OLS regression although they did not 

specifically state that). Their analysis found that IV regression might provide a better 

indication of the effects oflength of stay on new born readmissions due to selection bias 

because standard statistical methods appeared to underestimate the effects. They 

concluded that lengthening postpartum hospital stays reduces readmissions. 

The above information suggests that IV regression can offer a viable means of 

addressing both policy questions about the average effects of health care interventions and 

hidden selection bias when performing observational studies. The information further 
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suggests that using geographic location variables as instruments can induce variation in an 

endogenous explanatory variable. However, finding suitable IVs that comply with the 

required assumptions may be challenging. In addition, the information suggests that OLS 

can sometimes provide better estimates of the effects of a particular treatment or program 

than IV regression. This may stem from the fact that finding a suitable instrument can be 

difficult. 

Summary 

This chapter provided a review of the literature on disease management, self­

management education and self-efficacy theory, diabetes disease management evaluations, 

and OLS and IV regression. The intent was to provide a foundation for understanding the 

analytical design and methods that were used in the study. The review found that disease 

management has become very popular since the early 1990s, in part, due to efforts to both 

control costs and improve the quality of medical care that chronically ill individuals 

receive. Moreover, it found that disease management appears to be well suited for state 

Medicaid agencies because these programs serve a population that is more susceptible to 

chronic ailments than the general U.S. population. 

The literature review further found that a variety of research designs, statistical 

methods, and outcome variables have been employed to evaluate the effectiveness of 

diabetes DM programs and services. While the primary justification for the study's 

analytical design comes from Linden and Adams (2006), the reviewed articles provide 

further justification for the study's design which was quasi-experimental and employed 

regression procedures to evaluate the effectiveness of diabetes DM services on three 
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outcome variables. Of particular importance is the fact that no evaluations were identified 

that used IV regression, which was the focus of this study. IV regression is a widely used 

econometric procedure, but has received limited attention by the health services research 

community (Newhouse & McCellan, 1998). This may be due to the fact that IV regression 

has only recently been used by health services researchers. In fact, the first health services 

study that employed IV regression was only conducted in 1994 (McCellan & Newhouse, 

2000). Finally, the literature review considered some of the technicalities involved with 

performing OLS and IV regression and how some health services researchers have 

employed these procedures. Of particular importance here is the fact that IV regression 

does not always provide a suitable solution to selection bias issues that are encountered in 

observational studies. 
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Definitions of Important Terms 

Definitions for important terms used in the present study are provided below. 

Administrative Claims Data: Medicaid claims data created for payment purposes rather 

than for research purposes. Claims data represent electronic versions of bills submitted by 

Medicaid providers (i.e., physicians, hospitals, pharmacies, etc.) for recipient office visits, 

hospital stays, pharmacy purchases, laboratory tests, or other encounters. Administrative 

claims data contain information on items such as: 1) the date and location of services, 2) 

type and cost of services, 3) procedures performed, 4) extent of services (i.e., hospital 

stays), and 5) recipient demographics (Piecoro, Wang, Dixon, & Crovo, 1999; Wyant & 

Parente, n.d.). 

Diabetes: Diabetes is a chronic disease that occurs when an individual is unable to 

produce or use insulin, which is a hormone needed to convert sugar, starches, and other 

food products into energy (HMC, 2007). 

Disease Management (DM): DM is a system of coordinated health care interventions and 

communications for populations with chronic disease (i.e., illnesses or conditions lasting 

more than three months in duration) that can be mostly controlled through patient self-care 

activities (Linden & Adams, 2006). 

Disturbance (or Error) Term: The variable in an OLS regression model that contains 

unobserved factors affecting the outcome variable. The error term may also include 

measurement errors in the outcome or predictor variables (Wooldridge, 2006). 
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Endogenous Explanatory Variable: In OLS regression, an independent variable that is 

correlated with the disturbance term due to measurement error, omitted variables, or 

simultaneity (Wooldridge, 2006). 

Estimate: The numerical value of an estimator derived from data on subjects in a specific 

sample (Stock & Watson, 2007). 

Estimator: A procedure for using sample data to estimate the value of a population 

parameter. Ideally, researchers prefer estimators that get as close as possible to the 

unknown true value of the population parameter (Stock & Watson, 2007). 

Exogenous Variable: Any variable in an OLS regression model that is uncorrelated with 

the disturbance term (Wooldridge, 2006). 

High Intensity On Demand: Virginia Medicaid recipients who were contacted by HMC 

and declined to received the high intensity intervention, lost contact with HMC, or were 

never contacted by HMC. These individuals receive educational mailings (HMC, 2007). 

High Intensity Open: Virginia Medicaid recipients who agree to receive the high 

intensity intervention. These individuals receive regular follow-up calls, individualized 

care plans, 24-hour access to program nurses, and quarterly condition-specific information 

(HMC, 2007). 

Instrumental Variables (IV) Regression: An IV regression model is a linear equation 

that is used when one or more instrumental variables are available for the endogenous 

predictor (Wooldridge, 2006). IV regression is usually performed using two-stage least 

squares regression. 
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Instrumental Variable (IV): In a regression model containing an endogenous 

independent (or predictor) variable, the IV is a variable (or set of variables) that is not 

contained in the model, is uncorrelated with the model's disturbance term, and is partially 

correlated with the endogenous predictor (Wooldridge, 2006). 

Observational Study: A study in which variables are observed instead of manipulated 

and subjects are not randomly assigned to treatment conditions (i.e., a quasi-experimental 

study) (Shadish et al., 2002). 

Ordinary Least Squares (OLS) Regression: OLS regression is a statistical methodology 

that relates a quantitative outcome (or dependent) variable to one or more quantitative 

and/or qualitative independent (or predictor) variables. OLS estimates parameter 

coefficients for the predictors by minimizing the sum of squared residuals. The end result 

is a mathematical model that predicts the outcome variable for the given set of predictors 

(Mendenhall & Sinich, 2003; Wooldridge, 2006). 

Propensity Score: The propensity score is the probability that an individual will be 

assigned to the treatment group instead of the control group based on a set of observed 

variables Z;. The propensity score is formally defined as P(Z;) = Prob(T = 1 IZi) (Winship 

& Morgan, 1999). 

Selection Bias: Nonrandom assignment to treatment conditions that result in subject 

characteristics between conditions that may be related to differences in outcome (Shadish 

et al., 2002). 

Standard Intensity: Virginia Medicaid members who are considered at standard risk for 

future health care expenses and are able to manage their conditions with limited external 
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support. They receive mail-in assessments, educational materials, quarterly disease-

specific information, and 24-hour access to program nurses (HMC, 2007). 

Two-Stage Least Squares Regression: An IV regression procedure, where the IV for an 

endogenous explanatory variable is obtained by regressing the endogenous variable on all 

exogenous variables (Wooldridge, 2006). 
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Chapter 3 

Methodology 

The purpose of this study was to compare and contrast ordinary least squares (OLS) 

regression and instrumental variables (IV) regression using a three-digit zip code 

instrument procedure developed by Linden and Adams (2006). OLS and IV regression are 

two statistical methods that can be used to estimate treatment effects in observational ( or 

quasi-experimental) studies. OLS regression is used in observational research to assess the 

relationship between a treatment variable and an outcome, while adjusting for important 

explanatory variables to ensure comparability between the treatment and control groups 

(Newgard, Hedges, Arthur, & Mullins, 2004). However, OLS regression may fail to 

produce consistent effect estimates if certain important variables that are correlated with 

the treatment are excluded from the analysis (Foster & McLanahan, 1996; Guo, Barth, & 

Gibbons, 2006). This often occurs in observational studies because individuals who 

participate in treatments (or programs) usually differ systematically from those who do not. 

IV regression, which approximates a pseudo-randomization, can ameliorate this by 

inducing variation in the treatment variable, but not in the outcome (Newhouse & 

McClellan, 1998; Scheider et al., 2007). To implement IV regression, researchers have to 

find one or more variables (called instruments) that produce this variation. Unfortunately, 

finding suitable variables that meet this criterion can be very challenging (McClellan & 

Newhouse, 2000). This study specifically examined the feasibility of using patient three­

digit zip codes as instruments in an IV regression analysis to evaluate the effects of 
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participation in the Virginia Healthy ReturnlM DM program. 13 Linden and Adams (2006) 

argue that patient three-digit zip codes can function as instruments by inducing variation in 

the treatment variable (i.e., the DM program participation variable). Thus, they reason that 

zip code instruments can offer a means of providing an unbiased estimate ofDM causal 

effects on certain outcome variables. 

This chapter reviews the methodology that was employed during the present study. 

Additional information on the study design, database, population, variables, and statistical 

procedures is provided in the sections below. 

Study Design and Research Questions 

Researchers seek to make causal inferences when evaluating social and medical 

interventions. Causality is strongest when researchers conduct controlled randomized 

experiments where subjects are randomly assigned to the study groups. Randomization 

balances the groups in terms of all relevant factors other than treatment exposure. It is 

because of randomization that causation can be inferred from experimental studies. 

However, experimental studies are usually difficult to implement for a variety of financial, 

ethical, and practical reasons. When experimental studies are not feasible, social scientists 

normally turn to observational research designs (Freedman, 2005). 

Because Medicaid recipients self-select into the high intensity open treatment 

option of the Virginia Healthy Returns5M Program, this study was conducted as an 

observational study (Freedman, 2006). A key characteristic of an observational study is 

13 
The study did not attempt to determine the feasibility of IV regression in general. Instead, it sought to 

determine the appropriateness of a particular instrumental variables procedure that was proposed for 
evaluating DM programs. 



www.manaraa.com

79 

that subjects are assigned nonrandomly to the treatment and control groups. The 

investigators simply observe what occurs during the study because they are unable to 

manipulate the treatment. For example, medical studies that examine issues, such as the 

effects of smoking, are observational because researchers cannot ethically randomize 

subjects to the treatment and control groups. A second characteristic of observational 

studies is that researchers try to estimate the effects of an intervention by comparing the 

treatment group to the control group on an outcome variable (Freedman, 2005). A third 

characteristic is that an observational study usually involves the analysis of data from a 

large administrative database to establish the consequences of social or medical 

interventions (Newhouse & McClellan, 1998). 

Based on the above information, the present study employed an observational 

design because: 1) the high intensity open subjects self-selected into the treatment group, 

2) the effects of the DM program were estimated by comparing the treatment and control 

groups on several outcome variables, and 3) the analysis data came from a large pre­

existing administrative database. Because the study by Linden and Adams (2006) used a 

one year experience of a diabetes DM program, the study period for this analysis was from 

January 1, 2007 to December 31, 2007. 14 The objective of the study was to determine ifan 

IV zip code procedure similar to the one developed by Linden and Adams using data from 

an Oregon managed care diabetes DM population could generalize to a Virginia Medicaid 

diabetes DM population. Three research questions were addressed in the study: 

14 
The Healthy Return/M Disease Management program officially began in January 2006. Calendar Year 

(CY) 2007 was selected because it represents the program's most recent year of operation. 
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1. Which statistical method provides the best unbiased estimates of high intensity 

open DM program participation on the outcome variables? 

2. Do the parameter estimates and confidence intervals for the outcome variables 

differ depending upon which statistical method is used? 

3. What are the advantages and disadvantages of using OLS and IV regression to 

evaluate high intensity open DM program effectiveness? 

Database 

80 

The study data came from the Virginia Medicaid Management Information System 

(VaMMIS), which is a large administrative database that the Virginia Department of 

Medical Assistance Services (DMAS) uses to process medical claims submitted by health 

care providers for providing services to Virginia Medicaid recipients. In January 2008, the 

contractor that administers the DM program for DMAS provided the researcher with a list 

of Medicaid recipient identification numbers for 2,741 diabetes recipients who were 

enrolled as either high intensity open, high intensity on demand, or standard intensity 

patients in the DM program during calendar year (CY) 2007. 

The high intensity open participants served as the treatment group and the standard 

intensity participants served as the control group. The rationale for using the high intensity 

open recipients as the treatment group was that these individuals actively participated in 

the DM program, while the standard intensity recipients did not. According to Linden et 

al. (2005), this comparison is appropriate when evaluating population-based DM programs 

because most (i.e., 95 percent or more) of the eligible recipients will be enrolled, which 

limits the number of subjects available for comparison purposes. 
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All recipient-level claims and demographic data are stored within VaMMIS as SAS 

files. The researcher worked with staff in the DMAS information management division to 

develop SAS programs that used the recipient identification numbers to collect claims and 

demographic data on each subject. As part of this process, 339 subjects who were not 

continuously enrolled in both the Virginia Medicaid program during CY 2006 and 2007 

and the Healthy Returns
sM 

DM program during CY 2007 were deleted from the analysis· 

dataset. Recipients who participated in a DM pilot program that operated prior to January 

2006 were also deleted. In addition, 775 high intensity on demand recipients were deleted 

from the dataset. The purpose of these deletions was to ensure that the treatment and 

control groups contained subjects who had equally experienced the study outcomes (i.e., 

hospitalizations, ED visits, and diabetes-related costs) (Linden et al., 2005) and to increase 

the chances of detecting treatment effects by reducing potential extraneous variability (i.e., 

background noise) due to the high intensity on demand recipients (Mendenhall & Sincich, 

2003).15 The data were then collapsed to form the study variables. Once the variables 

were developed, they were compiled into a dataset for use in the study's analysis stage. 

The computer programming needed to assemble the dataset occurred during February 

2008. 

Population and Sample 

For this study, the population of interest was Virginia Medicaid diabetes recipients 

who were enrolled continuously in either the high intensity open or standard intensity 

15 
High intensity on demand recipients can receive high intensity open services, which are not reflected in the 

claims data. 
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options of the Healthy Return?M program during CY 2007 (N= 1,627) and had not 

participated in the DM pilot program. (Continuous enrollment was defined as DM 

participation beginning on January 1, 2007 and ending on December 31, 2007.) The unit 

of analysis was the individual diabetes DM participant. The treatment group consisted of 

the 229 high intensity open participants, while the control group consisted of the 1,398 

standard intensity participants.16 

Study Variables 

This section consists of two subsections. The first subsection provides information 

on the outcome variables, while the second presents information on the independent 

variables. Detailed information on both the zip code instruments and propensity score 

variables employed by Linden and Adams (2006) is provided in the second section. 

Outcome Variables 

Three outcome variables were examined in the present study: CY 2007 annual 

diabetes costs, hospital emergency department (ED) visits, and hospital days. The 

operational definitions of these variables are as follows: 

• annual diabetes costs are costs related to any medical claim submitted to 

Virginia Medicaid during CY 2007 for one of the diabetes patients where 

16 According to Stevens (2002), studies involving treatment and control groups that consist of about 100 
subjects each will achieve a power ofat least 0.94. Thus, the probability ofa type II error (or failing to find 
significant relationshjps that actually exist) would be 0.06 or less in these studies. Based on this information, 
power was not an issue in this study because the treatment and control groups consisted of229 and 1,398 
subjects respectively. These large samples made it highly probable that the statistical analyses identified 
significant relationships that actually exist in the study population. 
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diabetes was indicated as a diagnosis using international classification of 

diseases version 9 clinical modification (ICD-9-CM) codes 250.0 to 250.9, 17 

• hospital ED visits are the total number of ED visits made by recipients during 

CY 2007 for either emergency or non-emergency related conditions, and 

• hospital days are the total number of days that recipients stayed in hospitals 

during CY 2007. 
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It should be noted that both the hospital ED and hospital days outcome variables 

may include data on both diabetes related and non-diabetes related conditions. It should 

also be noted that the hospital days variable may overstate the number of days that some 

recipients stayed in the hospital due to how the variable was calculated.18 In addition, all 

outcome variables include a substantial number of zeros because many of the DM patients 

did not visit EDs, stay in hospitals, or incur diabetes-related medical costs during the study 

period. As a result, the zeros in these variables were not considered missing values 

because they represented legitimate observations. 

The outcome variables were selected for three reasons: 1) Linden and Adams 

(2006) used them in their IV analysis, 2) several articles reviewed for this study used 

similar outcomes (Berg & Wadhwa, 2007, Christakis, et al., 2004, and Villagra & Ahmed, 

2004), and 3) the Virginia Healthy ReturniM DM Program is intended to reduce these 

17 
According to the National Center for Health Statistics (2007) website, the ICD-9-CM is used to assign 

codes to diagnoses related to inpatient, outpatient, and physician office visits in the U.S. Searching for 
claims where diabetes is indicated as a diagnosis should eliminate claims that are not associated with 
diabetes, such as claims submitted for broken bones or sore throats. 
18 The variable was calculated using the "through" and "from" dates on hospital and physician 
inpatient/outpatient medical claims. Because there are no admittance or release dates on medical claims, this 
variable should probably be viewed as a proxy for the number of days that recipients were hospitalized 
during a calendar year. 
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outcomes for program participants. While justification exists for using these variables, 

several caveats are associated with their use. In particular, Linden (2006) reports that costs 

can be problematic due to fluctuations in provider reimbursements, insurance coverage, 

and technological innovations, which are beyond the control of most DM programs. 

Observed cost changes may thus not be entirely attributable to DM interventions. Linden 

(2006) further reports that ED visits and hospitalizations may be low in the target 

population prior to program implementation. If this occurs, then statistical analyses may 

not detect any significant program effects on these two outcomes. These caveats should be 

considered when interpreting the study's analytical results. 

Independent Variables 

Five independent (or predictor) variables were used in the study: actual program 

participation, predicted program participation, propensity scores, age, and gender. The 

program participation variable was a dichotomous variable coded as 1 = high intensity 

open participant and O = standard intensity participant. Following guidance from Linden 

and Adams (2006), predicted program participation represented the probability of a given 

individual enrolling in the Virginia Healthy ReturniM 
DM Program. This variable was 

calculated using recipient zip codes. The actual program participation variable was used in 

the OLS regression models for comparison purposes. This variable was presumed to be 

influenced by selection bias due to preexisting differences between the treatment and 

control subjects (Wooldridge, 2006). 19 

19 
In structural equation modeling terms, predictor variables that are correlated with the error term are known 

as endogenous variables, while variables that are independent of the error term are referred to as exogenous 
(Freedman, 2006). 
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To perform IV regression, a researcher should select one or more instruments that 

are related to the endogenous predictor, but are not related to the outcome variable (Foster 

& McLanahan, 1996). For DM evaluations, this means that a variable must be identified 

that is predictive of a recipient's DM enrollment status, but is not associated with any of 

the unobserved covariates that influence the outcome variables. Linden and Adams (2006) 

argue that recipient three-digit zip codes make good instruments for two reasons: 1) a · 

recipient who lives in a DM covered service area would be eligible for enrollment, but not 

necessarily enroll, and 2) living in a particular zip code may be independent of specific 

unobserved confounding variables. 

Zip codes (i.e., zone improvement plans) are five-digit numbers that identify 

specific geographic mail delivery systems. Five-digit zip codes are assigned to every 

address in the United States. The first digit designates a general area of the country. For 

example "2" designates the District of Columbia, Maryland, North Carolina, South 

Carolina, Virginia, and West Virginia. The second and third digits refer to a US Postal 

Service sectional center facility (SCF). Each SCF functions as a distribution and 

processing center for approximately 40 to 150 surrounding post offices that are located 

within the facility's designated geographic area. The fourth and fifth digits designate one 

of the surrounding post offices. Zip codes are composed of clusters of addresses identified 

for mail delivery purposes. Urban and suburban zip codes are usually comprised of 

approximately located streets, while rural zip codes are comprised of selected roads or 

deli very routes (www.carrierroutes.com/ZIPCodes .html). 



www.manaraa.com

86 

For this study, the instrumental variables were generated using the procedure 

developed by Linden and Adams (2006). The process began by identifying the number of 

unique five-digit zip codes for the study subjects. The zip codes were then collapsed based 

on the first three digits in order to produce new zip codes that represent larger contiguous 

geographical areas ( e.g., each three-digit zip code represents a larger geographic area than 

each five-digit zip code). These zip codes were further examined to identify categories· 

with less than nine frequency counts, which were collapsed into a category called "other" 

(Linden & Adams, 2006). 

Linden and Adams (2006) argue that this zip code model mimics a "natural 

experiment" by assuming two types of zip codes: Zip Code-1, which represents high 

program participation, and Zip Code-2, which represents low program participation.20 

Linden and Adams argue that this "experiment" models how the differences in outcomes 

between these two zip codes are related to the differences in DM program participation 

rates. Because three-digit zip codes represent larger geographic areas than five-digit zip 

codes, they also argue that these larger areas may make participants and non-participants 

more similar on unmeasured confounders, which they indicate is true for measured 

demographic variables. They further argue that within a given three-digit zip code, the 

correlation between program participation and unmeasured confounders may be smaller 

than the correlation between zip codes. Thus, they reason that zip codes should have an 

20 
Natural experiments refer to exogenous events that change subjects' environments (Wooldridge, 2006). 
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indirect effect on the outcome variables that is interceded only by DM program 

. . · 21 22 part1c1patlon. 

Once the three-digit zip code categories were developed, logistic regression was 

used to estimate the probability of a given individual enrolling in the high intensity DM 

program using the participants' actual program participation status as the dependent 

variable (1 = high intensity open participant and O = standard intensity participant) and k-1 

dummy variables to represent the three-digit zip code categories. (Categorical variables 

are always modeled as dummy variables with one less than the actual number of levels to 

prevent situations of perfect multicollinearity from occurring.) Additional covariates 

included in the logistic regression model were age, gender, and propensity scores, which 

were considered to be exogenous variables in this study. The estimated probability of 

program participation was used as the endogenous variable in the IV regression models 

and the zip code dummy variables were used as instruments (Linden & Adams, 2006; 

Linden, personal cornrnunication, June 16, 2008). 

The feasibility of the logistic regression model was assessed using the likelihood 

ratio chi-square, c-statistic, Somer's D, and Gamma statistics. Descriptive statistics were 

also used to compare the characteristics of the treatment and control groups for the actual 

and predicted program participation variables to determine if significant differences existed 

21 
Linden and Adams (2006) did not offer any empirical evidence to support their zip code model nor did 

they elaborate on how the differences in outcomes are related to differences in program participation. 
22 The US Census Bureau collects socio-economic data at the five- and three-digit zip code levels. While 
these data could potentially be analyzed to determine whether significant observable differences exist 
between the individuals who reside in the three-digit zip codes used in the present study, such an analysis 
was not performed because it was outside the study's scope. However, these data could be used in a future 
study examining the feasibility of three-digit zip code instruments. 
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between the groups (Peng, Lee, & Ingersoll, 2002; Mendenhall & Sincich, 2003; Linden & 

Adams, 2006). In addition, simple regressions were performed to determine if the 

predicted probability of program participation and the actual program participation 

variables were related to the zip code instruments (Wooldridge, 2006). As part of this 

process, a sensitivity analysis was performed. The analysis consisted of regressing the 

upper and lower 95% confidence limits for the predicted probability of program 

participation on the zip code instruments to determine if the relationship between the 

probability of program participation and zip codes was sensitive to the specific form of this 

variable. 

Linden and Adams (2006) include a propensity score as an explanatory variable in 

their OLS and IV regression models.23 The propensity score is the conditional probability 

of assignment to a particular treatment given a vector of observed variables (Rosenbaum & 

Rubin, 1983). The propensity score (PS), which is calculated using logistic regression, is 

defined as: PS = Pr{ t = 11.x}, where t denotes whether a subject received the treatment and 

Pr{ t = 1 Ix} is the probability ofreceiving the treatment given the observed covariates, x. 

Propensity scores allow researchers to estimate program causal effects by directly 

comparing treatment and control subjects on various outcomes. For this reason, 

researchers can relax the typical assumptions ofregression (linearity, multicollinarity, 

parsimony, etc.) when calculating propensity scores (Love, 2004; Frank, Sykes, 

Anagnostopoulos, Cannata, Chard, Krause, & McCrory, 2008). 

23 
Linden and Adams (2006) referred to the propensity score as a risk score in their article. Linden (personal 

communication, October 19, 2007) indicated that the risk score was actually a propensity score. 
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By collapsing the observed covariates into one score, the propensity score 

represents the probability that a particular subject would have received the treatment over 

another subject based on a larger collection of covariates. As such, the propensity score 

functions as a balancing score. In observational studies where subjects are nomandomly 

assigned to the treatment and control groups, systematic differences are assumed to exist 

that can bias treatment effect estimates. Researchers use propensity scores to reduce overt 

bias by integrating this mechanism into the analysis in order to improve study group 

comparability. This process can be viewed as a means ofreducing bias to obtain better 

program effect estimates through a quasi-randomization of the study groups (Newgard et 

al., 2004). 

Propensity scores are generally employed using one or more of the following 

methods: 1) regression - where the propensity scores are added to the model as a 

covariate, 2) stratification - where the sample is divided into quintiles based on propensity 

scores to allow for the assessment of treatment effects within stratums, and 3) matching -

where treatment and control subjects are matched based on similar propensity scores to 

allow for less biased estimates of program treatment effects (D' Agostino, 1998; Newgard 

et al., 2004). Weighting, which is rarely used in medical research, is another method of 

employing propensity scores (Austin, 2008; Frank et al., 2008). In this scenario, weights 

such as 1/PS and 1/(1 - PS) for the treatment and control subjects are created as a means 

for better estimating average program causal effects (Gelman & Hill, 2007). (The use of 

propensity score weighting is further explored in Appendix A.) 
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In their article, Linden and Adams (2006) did not specify which propensity score 

method they used; however, Linden (personal communication, October 19, 2007) reported 

that matching was employed. While matching is the preferred method of using propensity 

scores, it eliminates subjects from the analysis who cannot be matched, which can result in 

the loss of considerable data (Frank et al., 2008). It also requires the development of 

sophisticated matching algorithms and computer programs that are capable of matching­

pairs ( or groups) of subjects and then either removing them from the pool of all available 

subjects or keeping them in for additional matching (Shadish et al., 2002; Morgan & 

Winship, 2007). For these reasons, the propensity score was simply used as a regression 

covariate in the study. The benefit of this approach is that the propensity score serves as an 

explanatory variable that controls for observable background characteristics in the 

regression analysis, while maintaining the integrity of the study sample (Wooldridge, 

2002; Frank et al., 2008). 

Linden and Adams (2006) estimated their propensity score regression model by 

using actual program participation status as the dependent variable and 150 clinical, 

financial, demographic, and utilization variables. Such an endeavor was not feasible for 

this study because the data came from a large preexisting database that contains thousands 

of raw data elements. Converting these elements into meaningful variables would require 

substantial computer programming efforts. Because variable selection for propensity score 

calculations is ad hoc (Brookhart, 2006; Sturmer, Joshi, Glynn, A vorn, Rothman, & 

Schneeweiss, 2006), the propensity scores were calculated using several variables selected 

because of their availability. These variables included CY 2006 diabetes-related costs, CY 
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2006 health care utilizations, age, gender, race, region of residence, country of origin, and 

citizenship status. The appropriateness of the propensity scores was assessed by 

examining the overlap in the distribution of scores between the treatment and control 

groups. A series of simple regressions were also performed to determine if the scores 

controlled for significant differences between the study groups on the covariates. 

Finally, CY 2007 recipient age and gender were included as covariates in both the 

OLS and IV regression models. These variables were operationalized using the same 

definitions employed by Linden and Adams (2006) where age was measured in years and 

gender was coded as 1 = female and O = male. 

Data Screening 

Data screening consisted of calculating descriptive statistics for both the outcome 

and independent variables (Cohen, Cohen, West, & Aiken, 2003). Means, standard 

deviations, ranges, histograms, and box plots for the quantitative variables and frequency 

distributions for the qualitative variables were calculated as part of the initial data 

screening process. As previously mentioned, zeros in the outcome variables were not 

considered missing since some recipients did not incur costs or utilize inpatient services 

during CY 2007. Data screening was performed using SPSS version 15.0. 

During data screening, particular attention was focused on identifying univariate 

and multivariate outliers because they can distort regression coefficients, standard errors, 

and model R2 statistics (Tabachnick & Fidell, 2001; Cohen et al., 2003).
24 

Outliers usually 

24 
In regression, outliers are observations that deviate from other cases on the dependent variable, while 

leverage points are observations that deviate from others on the independent variables. Observations that 
deviate on both the dependent and independent variables are influential data points (Mays, personal 
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represent either contaminated data (i.e., measurement or coding errors) or accurate 

observations ofrare cases (Cohen et al., 2003). For this study, univariate outliers were 

identified using box plots and standardized scores greater than 3.29 (Tabachnick & Fidell, 

2001).
25 

The data were screened for multivariate outliers by calculating Mahalanobis 

distance statistics for all study subjects in the dataset. Mahalanobis distance represents the 

distance that a subject is from the centroid of all subjects, where the centroid represents the 

intersection of the variables' averages. Mahalanobis distances were calculated by 

regressing each outcome variable on the predictors and then saving the distance statistics 

generated as part of the regressions. Mahalanobis distances were evaluated using the chi­

square distribution (p < 0.001) with degrees of freedom equal to the number of predictors 

in the models. Cook's distances were also calculated as part of this process. Cook's 

distance is a leverage measure that assesses change in regression coefficients when 

observations that differ from others in the independent variables are deleted. Observations 

with distance scores greater than 1.0 were identified as outliers (Tabachnick & Fidell, 

2001). 

Based on these analyses, a number of outlier observations were identified. To 

determine if outliers should be deleted or retained, a series of regressions were performed 

with the outliers included and excluded and the variables containing them transformed 

using either the natural logarithm, reciprocal, or square root transformations to reduce their 

communications, January 7, 2008). However, for simplicity the term "outlier" (i.e., outliers, leverage points, 
and influential data points) was defined in this study as a case with an extreme value on one variable (a 
univariate outlier) or a combination of extreme values on two or more variables (a multivariate outlier). 
25 

Tabachnick and Fidell (2001) report in their textbook on multivariate statistics that among continuous 
variables, cases with very large standardized scores in excess of 3 .29 are potential outliers. 
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impact on the regression models. Transformations can reduce the influence of outliers by 

changing the variables' distributions to be approximately normal (Tabachnick & Fidell, 

2001). Diagnostic statistics were performed on the transformed variables and the variables 

with deleted values to determine if these options reduced the outliers' influence. 

As part of this process, regression analyses were performed to allow the researcher 

to determine if the outlier adjustments produced any notable changes in the overall 

regression models. Specifically, the researcher sought to determine if the significance of 

the model F statistics or predictors changed or if the R
2 statistics fluctuated substantially. 

If no noticeable changes are observed, then little is probably gained by transforming the 

variables or deleting observations from the dataset. However, if changes are observed, 

then a decision can be made as to whether the transformed variables or the original 

variables should be used in the analysis. 

Normality, linearity, and homoscedasticity were assessed to ensure that the data 

met these required OLS regression assumptions. Normality refers to the extent to which 

the variables have distributions that are approximately normal. Linearity is the degree to 

which a straight line relationship exists between two variables, and homoscedasticity is the 

extent to which the residual distribution has equal variances for all predicted values of the 

outcome variable (Cohen et al., 2003). Assessment of these assumptions was performed 

by calculating skewness and kurtosis statistics (they should be near zero) for each variable, 

and by regressing each outcome on the predictors to generate residual plots, where 

standardized residuals are plotted against the outcomes' predicted values. 
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Evidence for violations of the OLS regression assumptions exists if the skewness 

and kurtosis statistics are large, if noticeable patterns exist in the residual plots, or if the 

residuals are predominately located above or below the residual plots' mean zero lines 

(Stevens, 2002; Tabachnick & Fidell, 2001). The key to working with transformed 

variables is to identify the transformation that produces skewness and kurtosis values near 

zero, the cleanest residual scatter plot, and/or the least number of outliers. As a result, . 

several transformations were applied before the most appropriate transformations were 

identified for use in the study (Tabachnick & Fidell, 2001). 

Finally, the data were screened for bivariate and multivariate multicollinearity, 

which are serious conditions that exist when independent variables are highly correlated 

(i.e., contain redundant information). Multicollinearity can weaken statistical analyses by 

inflating error terms, which can cause parameter estimates to be non-significant 

(Tabachnick & Fidell, 2001). For this study, bivariate multicollinearity was defined as 

intercorrelations of at least 0.80 in a correlation matrix and multivariate multicollinearity 

was defined as variance inflation factors (VIF) that exceed 10 (Stevens, 2002). VIFs are 

calculated by regressing the outcomes on the predictor variables. Large VIFs indicate that 

there is a strong linear association between a particular predictor and the remaining 

predictors, suggesting the presence of multivariate multicollinearity. Screening for 

multivariate multicollinearity is important because it is possible for a predictor to only 

have weak or moderate bivariate correlations with other predictors, but then have a high 

multiple correlation when regressed with the other variables. If detected, multicollinearity 

can be addressed through variable deletion (Stevens, 2002). 
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As part of the multicollinearity screening process, particular attention was focused 

on determining if the predicted probability of program participation and the propensity 

score variables produced multicollinearity in the IV regression models since both variables 

represent the same concept (i.e., the probability of program participation). In addition to 

performing the correlation and VIF analyses, a quintile propensity score variable (levels 1 

- 5) was calculated and included in the IV regressions in lieu of the quantitative propensity 

score variable (0.0 - 1.0) to determine if the models were sensitive to this variable's 

specific form. 

Research Questions and Data Analysis 

This section discusses the data analysis procedures that were used to answer the 

present study's three research questions. Additional information is provided in the 

subsections that follow. 

Analysis of Research Questions One and Two 

The first two research questions developed for the study were: 

1. Which statistical method provides the best unbiased estimates of high intensity 

DM program participation on the outcome variables? and 

2. Do the parameter estimates and confidence intervals for the predictor variables 

differ depending on which statistical method is used? 

These questions were addressed by using STATA version 10.1 to estimate a series ofOLS 

and IV regression models for each outcome variable. Statistically significant results were 

determined using an alpha level of 0.05. 
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Research question one was addressed by estimating several OLS and IV regression 

models. The OLS models were estimated by regressing the outcomes on the actual DM 

program participation, propensity score, age, and gender variables. Three blocks ofOLS 

and IV regression models were developed for the study (i.e., a total of 18 regression 

models were developed). In the first block, the IV models were estimated following the 

method used by Linden and Adams (2006) where each outcome was regressed on the 

predicted probability of program participation (the endogenous variable), zip code 

instruments, age, gender, and propensity score variables. In the second block, the 

predicted probability of program participation was replaced with the actual program 

participation variable to determine if the IV regression models were sensitive to the 

specific form of the endogenous variable used in the regressions. In the third block, the 

propensity score variable was replaced by a quintile variable to determine if the regressions 

were sensitive to this variable's specific form. 

The IV regressions were performed using two stage least squares regression 

(2SLS), which estimates two least squares equations simultaneously. In the first equation, 

both the zip code instruments and exogenous variables (which were age, gender, and 

propensity scores) were used to estimate X-hat (the predicted value of program 

participation). This variable was then inserted into the second equation instead of the 

actual endogenous variable and the outcomes were regressed on the predicted value of 

program participation and the exogenous variables. 2SLS must be used for the IV 

regression procedure because running OLS regression twice to perform the IV procedure 
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results in incorrect estimations of the residual sum of squares across all observations and 

their standard errors (Linden & Adams, 2006; Gelman & Hill, 2007). 

The feasibility of the IV regression models was assessed using a variety of 

statistical tests. For instance, a series of simple regressions were performed to determine if 

the instruments were related to both the program participation and predicted program 

participation variables. The residuals from each IV regression model were also regressed 

on the outcome variables to test the assumption that the IV estimates were not related to 

the outcome variables. The Sargon chi-square test was used to test the assumption that at 

least some of the zip code instruments were uncorrelated with the disturbance terms in the 

IV models. The Hausman specification test was used to determine if significant 

differences existed between the OLS and IV regression coefficients. Finally, the relevancy 

of the instruments was assessed by examining the first-stage F-statistics from the IV 

regressions (Hadley et al., 2003; Baum, 2006; Linden & Adams, 2006; Wooldridge, 2006; 

Stock & Watson, 2007).26 

Research question two was addressed by comparing the OLS and IV coefficients 

and confidence intervals for the variables in the three regression blocks. Particular 

attention was directed toward discussing why IV regression produces large coefficient 

variances and how these variances can lead to model instability. As part of the discussion, 

the calculations used to produce the OLS and IV estimates were briefly reviewed. 

26 Linden and Adams (2006) appeared to use the Durbin-Wu-Hausman F-test to determine if significant 
differences existed between their OLS and IV regression models. The Hausman specification test can be 
performed either as a chi-square or F-test. The Durbin-Wu-Hausman F-test was not used in this study 
because the "hausman" subcommand in the "ivregress 2sls" command in ST AT A version I 0. I reports a chi­
square test (Ender, n.d.; Hadley et al., 2003; Greene, 2003). 
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Information on the relevancy of the zip code instruments ( or the extent to which the 

instruments explain variation in the program participation variable) and the limitations of 

using instruments from natural experiments to estimate average treatment effects were also 

included. 

Analysis of Research Question Three 

The final research question developed for the present study was: 

3. What are the advantages and disadvantages of using each statistical method to 

evaluate high intensity DM program effectiveness? 

This question was addressed through the researcher's assessment of the advantages and 

disadvantages of using both methods for DM program evaluations. Particular emphasis 

was directed toward discussing the feasibility and limitations of using each method. 

Institutional Review Board 

Even though this study involved the analysis of preexisting administrative data, the 

researcher still had to link subjects to their confidential health records in order to create the 

study variables. The study thus involved human subject research, which required it to fall 

under the purview of Virginia Commonwealth University's Institutional Review Board 

(IRB). However, because the researcher protected the identifies of all subjects by 

removing their Medicaid recipient identification numbers from the analysis dataset, the 

university's IRB determined that the study qualified for an exemption under 45 Code of 

Federal Regulations (CFR) 46.101 (b )( 4 ), which states that research activities are exempt as 

long as subject identities are protected (U.S. Department of Health and Human Services, 

2007; Ann Nichols-Casebolt, personal communication, April 9, 2008). 
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Summary 

This chapter reviewed the methodology that was employed in the present study. 

Information was presented on the study design, database, population, variables, and 

statistical procedures. The study was conducted as an observational study because data 

from a large preexisting database was used to determine whether an instrumental variables 

regression procedure proposed by Linden and Adams (2006) could generalize to a Virginia 

Medicaid population. The planned analysis attempted to follow their procedure, albeit 

with some modifications. 
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Chapter4 

Results 

The results of the study are presented in this chapter, which begins with a 

discussion of the propensity score and instrumental variables calculation procedures. The 

data screening procedures employed to assess the appropriateness of the variables for the 

ordinary least squares (OLS) and instrumental variables (IV) regression models are next 

reviewed followed by a discussion of the analytical results from the OLS and IV regression 

models. The chapter concludes with a summary of important study findings. 

Propensity Score Variable Calculation 

According to some observers, selecting covariates from which to estimate 

propensity scores is a critical step that should be based on a-priori theoretical grounds and 

previous research (Yanovitzky, Zanutto, & Hornik, 2005; Guo et al., 2005). However, 

Linden et al. (2005) maintain that disease management (DM) evaluators should use any 

variables that are available because they often have access to limited amounts of data. For 

this reason, the propensity score variable was calculated using the variables presented in 

Table 1.27
•
28 

As can be seen from this information, most of the study subjects were female 

(1,152), white (1,377), and resided in the western part of the State of Virginia (1,336). 

This information also shows that considerable variability exists in the 2006 age (M = 

45.16, SD= 15.51), hospital days (M= 1.07, SD = 11.39), emergency department (ED) 

27 
An argument could be made that the variables used in the propensity score model were selected based on 

prior research because Linden et al. (2005) used age, sex, geographic location, number of hospital 
admissions, number of emergency department visits, and total costs to calculate propensity scores for a group 
of congestive heart failure DM participants. 
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Table 1 
Descriptive Statistics for Observed Covariates Used in the Propensity Score Regression 
Model (N = 1,627) 

Variable 

Gender/Male 

Gender IF emale 

Race/White 

Race/Black 

Race/Other 

Region/Coastal 

Region/N orthem 

Region/Central 

Region/W estem 

Country of Origin/US 

Country of Origin/Other 

Primary Language/English 

Primary Language/Other 

US Citizen/Yes 

US Citizen/No 

Age (2006) 

Hospitalizations (2006) 

ED Visits (2006) 

Frequency(%) 

475 (29.2%) 

1,152 (70.8%) 

1,377 (84.6%) 

208 (12.8%) 

42 (2.6%) 

70 (4.3%) 

72 (4.4%) 

149 (9.2%) 

1,336 (82.1%) 

1,568 (96.4%) 

59 (3.6%) 

1,612 (99.1 %) 

15 (0.9%) 

1,581 (97.2%) 

46 (2.8%) 

Mean (SD) 

45.16 (15.51) 

1.07 (11.39) 

1.62 (3.28) 
( continued) 

28 At a minimum, Linden, Adams, and Roberts (n.d.) argue that participant age and sex should be included in 

the propensity score calculation. 
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Diabetes Related Costs (2006) $1,963.09 ($7,084.46) 

visits (M = 1.62, SD = 3.28), and diabetes-related cost (M = $1,963.09, SD = $7,084.46) 

variables. The standard deviations for the hospital days, ED visits, and cost variables are 

much larger than the means, which indicates that the variables are positively skewed due to 

the presence of a large number of zeros. This finding is not too surprising because large 

numbers of zeros are frequently found in many variables that are examined in health 

services research (Mullahy, 1998). 

Ideally, actual pre-program (i.e., CY 2005) cost, utilization, and clinical variables 

should be used to calculate propensity scores (Linden et al., 2005)29, but the researcher did 

not have access to this information. In addition, while both quadratic and interaction terms 

can be included in propensity score regression models, only three interaction terms for the 

age, utilization, and cost variables were included in the propensity score model developed 

for the present study. These terms were added in order to maximize model fit and because 

previous research suggests that health care costs and utilizations may be influenced by 

patient age (Lynn & Adamson, 2003; Jones & Richmond, 2006). Interaction terms were 

used sparingly in the regression model because the inappropriate use of these terms may 

alter the estimated propensity scores by inflating coefficient variances (Baser, 2006). 

29 
Debate exists among researchers as to which variables to include in propensity score models. Some argue 

that only variables that predict treatment assignment should be included, while others argue that all variables 
that are potentially related to the outcome should be included. Still others argue that propensity scores 
should only be calculated using variables that are related to both the treatment and outcome variables 
(Austin, Grootendorst, & Anderson, et al., 2007). 
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The propensity scores were estimated using the logistic regression option in SPSS 

version 15.0. The program participation variable (coded as 1 = high intensity open 

participant and O = standard intensity participant) was used as the dependent variable in the 

regression model. The results of the regression for the propensity to be a high intensity 

open participant are presented in Table 2, Only the 2006 ED visits, cost, and age x ED 

visits variables were significantly related to the participation variable; however, all 

Table 2 
Logistic Regression for Propensity of Participating in the High Intensity Open DM 
Intervention (N = 1,627) 

Independent Variable Estimate 
Constant -3.492 

Female 0.133 

Race/White -0.254 

Race/Black 0.198 

Race/Other Reference 

Region/Coastal 0.580 

Region/Northern 0.411 

Region/Central 0.265 

Region/Western Reference 

Country of Origin US 0.281 

English Language -0.166 

US Citizen 1.043 

Age (2006) 0.001 

Std. Error 
1.168 

0.179 

0.741 

0.743 

0.371 

0.451 

0.292 

1.056 

0.772 

1.324 

0.007 

Waldi 
8.934 

0.548 

0.117 

0.071 

2.438 

0.831 

0.824 

0.071 

0.046 

0.620 

0.008 

p-value 
0.003 

0.459 

0.732 

0.790 

0.118 

0.362 

0.364 

0.790 

0.829 

0.431 

0.928 
( continued) 
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ED Visits (2006) -0.370 0.124 8.926 0.003 

Hospital Days (2006) 0.191 0.140 1.858 0.173 

Cost (2006) 0.000 0.000 6.680 0.010 

Age x ED Visits 0.009 0.003 11.303 0.001 

Age x Hospital Days -0.004 0.003 2.799 0.094 

Age x Costs 0.000 0.000 0.733 0.392 

13 variables were retained because propensity scores should include all variables that may 

play a role in the treatment assignment process, even if they are not statistically significant 

(Shadish et al., 2002).30 

The results of the overall propensity score regression model appeared adequate. 

The regression model correctly classified 79.0 percent of the subjects using 14 percent as 

the classification cutoff score (14.0 percent of the subjects were in the treatment group). 

The likelihood ratio chi-square statistic of the propensity score model was significant (I= 

218.50, df= 16,p = 0.000), indicating that the model provided a good fit to the data. More 

importantly, the propensity score model c-statistic was 0.783, indicating that the model 

discriminated effectively between the individuals in the treatment and control groups based 

on the observed covariates. In other words, the model assigned a high probability of 

30 
It is acceptable to use nonparsimonious models to estimate propensity scores. In fact, some researchers use 

hundreds of variables to estimate propensity scores (Stukel et al., 2007). 
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treatment assignment to the treatment subjects in 78.3% of all possible subject pairs 

(Hosmer & Lemeshow, 2000; Peng et al., 2002).
31

,
32 

After performing the regression, the adequacy of the actual propensity scores was 

assessed by examining the overlap in the distribution of scores between the treatment and 

control groups. This was accomplished by reviewing the ranges of the estimated 

propensity scores for the treatment and control subjects as well as two histograms that 

depicted the distribution of scores for both groups (Love, 2003; Linden et al., 2005). 

Overlap between the two study groups is necessary for comparability between the 

treatment and control subjects. A lack of overlap implies that there are combinations of 

covariate values that are found in only one of the two study groups, suggesting that the 

treatment and control subjects cannot be meaningfully compared (Landrum & Ayanian, 

2001). 

Based on this examination, substantial overlap appeared to exist between the treatment and 

control groups. The estimated propensity scores for the treatment subjects ranged between 

0.03 and 1.00 (M = 0.30, SD = 0.28), while the estimated propensity scores for the control 

31 While propensity score methods have been in existence for more than two decades, debate still exists over 
how best to calculate and evaluate propensity score regression models (Weitzen, Lapane, Toledano, Hume, & 
Mor, 2004; Austin et al., 2007; Baser, 2006; Hill, 2008; and Caliendo & Kopeinig, 2008). For instance, 
some researchers use goodness of fit measures such as the Hosmer-Lemeshow chi-square test and c-statistics 
in addition to propensity score overlap and covariate balance to assess propensity score models (Baser, 
2006), while others use c-statistics and likelihood ratio tests to assess the models (Normand, Sykora, 
Mamdani, Rochon, & Anderson, 2005; Jones & Richmond, 2006). Still, others argue that goodness of fit 
measures are of little value in assessing propensity score models (Love, 2004). Due to this debate, the 
researcher assessed the appropriateness of the propensity score model using the likelihood ratio test, c­
statistic, propensity score overlap, and covariate balance. While not reported in the text, the researcher did 
calculate the Hosmer-Lemeshow test statistic to assess the model's classification power. The statistic was 
significant(;(= 17.22, df= 8,p = 0.000) indicating that the model did not have good classification power. 
However, Allison ( 1999) reports that this statistic is "ad hoc" and may not be very powerful. 
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subjects ranged between 0.00 and 0.97 (M= 0.12, SD= 0.10). This overlap is illustrated in 

Figure 3, which shows that a majority (86.7%) of the scores fell in the 0.00 - 0.20 

categories. This finding suggests that the treatment group mirrors the larger population of 

diabetes DM recipients from which they were selected (Linden et al., 2005). Figure 3 also 

shows that a slightly larger percentage of treatment subjects had scores greater than 0.40. 

Overall, these findings indicate that the treatment and control groups had reasonable 

overlap at all but the highest values of the propensity scores (Newgard et al., 2004). 

Finally, simple regression analyses were performed to determine if the propensity 

scores produced balance between the two study groups on the covariates (Table 3). To 

Figure 3 
Propensity Score Distributions 

Control 40%------�=�-------, 

10% 

0.20 0.40 0.60 0.80 1.00 

Propensity Score 

0.20 0.40 0.60 0.80 1.00 

Propensity Score 

32 The c-statistic ranges between 0.5 and 1.0, with a value of 0.5 indicating that the 
_
mo_del _is no better than 

assigning subjects randomly to the treatment and control groups and a value of 1.0 md1catmg that the model 
assigns high probabilities to all subjects in the treatment group (Peng et al., 2002). 



www.manaraa.com

107 

Table 3 
SimpJe Regression Analysis to Assess Covariate Balance (N = I, 627) 

Treatment Control Unadjusted Adjusted 
Variables (n = 229)* (n = 1,398)* ,e-value** ,e-value** 
Female 166 (72.5%) 986 (70.5%) 0.546 0.771 

Nonwhite Race 52 (22.7%) 198 (14.2%) 0.001 0.441 

Western Region 170 (74.2%) 1,166 (83.4%) 0.001 0.485 

Country of Origin US 225 (98.3%) 1,343 (96.1%) 0.110 0.507 

English Language 226 (98.7%) 1,386 (99.1%) 0.511 0.964 

US Citizen 226 (98.7%) 1,355 (96.9%) 0.147 0.507 

Age 46.6 (14.25) 44.93 (15.70) 0.131 0.577 

Hospital Days 4.90 (29.75) 0.44 (1.91) 0.000 0.644 

ED Visits 2.36 (3.65) 1.50 (3.20) 0.001 0.933 

Diabetes Related Costs $7,473.33 $1,060.48 0.000 0.191 
($16,962.42) ($2,380.31) 

*Frequencies and (percentages) are presented for the categorical variables, and means and 
(standard deviations) are presented for the quantitative variables. 
** Adjusted p-values were calculated with the propensity score included in a logistic 
regression analysis modeling the relationship between each covariate and the program 
participation variable. 

perform these analyses, the treatment variable was regressed separately on each covariate 

with and without the propensity scores. To simplify the analyses, the race and geographic 

region variables were transformed into two new dichotomous variables: nonwhite race (1 

= yes, 0 =no) and western region (1 = yes, 0 =no). After examining the p-values 

unadjusted for the propensity scores, it was determined that significantly different 



www.manaraa.com

108 

covariate distributions existed between the study groups on the nonwhite race, western 

region, and 2006 age, utilization, and cost variables. Using the covariate distributions as a 

proxy for comparability between study groups indicated that the two groups were not 

comparable on these variables. However, after adjusting for the propensity scores, no 

significant differences remained in the covariate distributions of the study groups 

(Newgard et al., 2004). These results suggest that the propensity scores could control for 

some potential overt confounding variables and were appropriate to use in the OLS and IV 

regression models. 

Instrumental Variables Calculation 

The instrumental variables calculation procedure began by identifying the unique 

number of five-digit zip codes in the sample (Linden & Adams, 2006). A total of337 

unique five-digit zip codes were identified. By collapsing these based on the first three zip 

code digits, 32 new zip code categories were developed. An examination of these zip code 

categories revealed that 14 categories contained nine or less participants. (A total of 54 

participants were contained in these nine categories.) Following guidance by Linden and 

Adams (2006), these participants were grouped into a zip code category called "other".33 

A new categorical variable was then created (called zip-code identifier) that contained 19 

levels corresponding to the 19 three-digit zip code categories. The frequencies of the zip 

code categories used as instrumental variables in the study are depicted in Figure 4. These 

33 
The researcher originally intended to group individuals in zip code categories with nine or less participants 

into geographically similar zip code categories with more than nine participants. However, upon examining 
a three digit zip code map of Virginia, it was not readily apparent which zip code categories these individuals 
should be grouped in because the categories cover large geographic areas bordering multiple three-digit zip 
code categories. 
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Frequency Distribution for the Three-Digit Zip Code Identifier Variable 
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results are comparable to the results reported by Linden and Adams (2006). The zip code 

categories were used as dummy variables in the first stage of the two stage least squares 

(2SLS) IV regression models. 

A logistic regression model was next developed to estimate the probability of a 

given individual participating in the high intensity open option of the Virginia Healthy 

Return�M DM program using age (years), gender (1 = female and O = male), propensity 

scores (0.0 - 1.0), and the zip code categories (Linden & Adams, 2006). While not 

specifically stated, Linden and Adams (2006) apparently performed this calculation to 
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determine if the IV assumption that Z is associated with X was satisfied, and to calculate 

the probability of program participation that they used as the endogenous variable in the 

two-stage least squares (2SLS) IV regression models.34 In other words, they did not use 

actual program participation as the endogenous variable in the IV regression models. 

The reasoning of Linden and Adams (2006) for doing this is unclear, however, 

because 2SLS automatically performs this calculation through two simultaneous least 

squares regressions (Greene, 2003). Essentially what the two stages do simultaneously is 

this: the first stage uses a set of instruments (and the other exogenous variables in the 

model) to generate least squares predictions of the endogenous variable, X, and then uses 

these predictions in lieu of the actual X to explain variation in the outcome variable in the 

second stage.35 

Because the present study sought to test the feasibility of Linden and Adams' IV 

procedure, logistic regression was used to estimate the probability of program 

participation. The predicted values of program participation from the logistic regression 

were then used to determine if Z is associated with X, and a 2SLS regression model was 

developed for each outcome variable using this value as the endogenous variable in the 

34 
Specifically, they reported (p.151) that "[i]ndependent variables included those exogenous variables from 

the first stage regression: age, gender, risk score, as well as the 'plug-in' or predicted value of program 
participation." Linden reported that the predicted probability of program participation was used as the 
endogenous variable instead of actual program participation (Linden, personal communication, June 16, 
2008). 
35 

The first stage attempts to identify variation in the treatment variable that is uncorrelated with the 
disturbance term. The second stage uses OLS regression to regress the outcome on just that portion of the 
treatment variable identified as being uncorrelated with the disturbance term in the first stage. This occurs 
because the predicted value of the treatment variable from the first stage is a linear combination of the 
instruments and the other exogenous variables. Because the instruments are uncorrelated with the 
disturbance term, the treatment variables' predicted value is uncorrelated with the disturbance term (Judd & 
Kenny, 1981). 
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first stage and its least squares predictions as the plug-in values in the second stage. 

(These regressions are referred to as the block one models in the OLS and IV regression 

section in Chapter 4.) 

However, using the estimated probability of program participation as the 

endogenous variable in 2SLS appears unnecessary because this variable is calculated in the 

first stage. Based on the information presented in their article, Linden and Adams (2006) 

calculated the probability of program participation using gender, age, propensity scores, 

and zip code categories in a logistic regression model. They then used this value as the 

endogenous variable instead of actual program participation in the first stage where they 

appear to re-estimate this probability again by regressing it on the same set of variables 

used to calculate it in the logistic regression. (In other words, the estimated probability of 

program participation served as the dependent variable in the first stage of 2SLS instead of 

the treatment variable.) This procedure does not appear to comply with the 2SLS guidance 

provided by Greene (2003), Wooldridge (2002 and 2006), Gelman and Hill (2007), and 

Stock and Watson (2007). As a result, the researcher recalculated the three 2SLS models 

using actual program participation as the endogenous variable in the first stage and its least 

squares predictions as the plug-in value in the second stage to determine if the models were 

sensitive to the specific form of the program participation variable used in the analysis. 

(These regressions are referred to as the block two models in the OLS and IV regression 

section of Chapter 4.) 

The logistic regression model developed to predict the probability of program 

participation contained 18 dummy variables that represented the 19 three digit zip code 
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categories as well as 2006 age (years), gender ( l = female and O = male), and the 

propensity score (0.0 - 1.0). This model was estimated based on the actual high intensity 

open program participation variable with 1 indicating program participation (or treatment) 

and O indicating nonparticipation ( or control). The model was used to estimate each 

subjects' probability of high intensity open DM participation, which was used as an 

endogenous variable in the 2SLS regressions. 

Diagnostic statistics indicated that the logistic regression model was sound. In 

particular, the likelihood ratio chi-square statistic was significant (x2 = 232.77, df = 21,p = 

0.000) indicating that the model adequately fit the data, and the c-statistic was 0.786 

indicating that the model discriminated effectively between the treatment and control 

subjects. The model also correctly classified 75.2% of the subjects, using 14% as the 

cutoff score. Moreover, the Somer's D and Gamma statistics for the model were 0.57 and 

0.58, which indicated that it had good predictive ability. For comparison purposes, Linden 

and Adams (2006) reported that their model was significant (p < 0.0001) and had very 

good predictive ability based on the Somer's D and Gamma measures, which were 0.61 

and 0.65. 

Table 4 is similar to a table that Linden and Adams (2006) presented in their article 

comparing the characteristics of the treatment and control groups using actual and 

predicted program participation status. They reported that their predicted enrollment 

model "compared favorably" to the actual participation data and that there were no 

significant differences in the age and gender distributions for the predicted enrollment 
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Table 4 
A Comparison of Group Characteristics Based on Actual and Predicted High Intensity 
Program Participation 

Group 

Actual 
Treatment 

Control 

Predicted 
Treatment 

Control 

N(o/o) 

229 (14.1) 

1,398 (85.9) 

465 (28.6) 

1,162 (71.4) 

Female 
Age (SD) Count(%) 

46.6 (14.25) 166 (72.5) 

44.93 (15.70) 986 (70.5) 

48.47 (14.23) 362 (77.8%) 

43.84 (15.81) 790 (68.0%) 

groups. They also noted that their predicted model slightly over-estimated program 

participation. Their actual study groups consisted of 1,952 (77%) program participants and 

582 (23%) control participants. However, their predicted study groups contained 2,029 

(81 %) program participants and 505 (19%) control participants. Based on this 

information, they concluded that their results satisfied the IV regression assumption that Z 

is associated with X. 

The results of the enrollment prediction model developed for the present study do 

not appear to compare favorably to the actual enrollment data because the model 

substantially over predicted high intensity program participation by 236 subjects. 

Significant differences also existed between the age and gender variables for the predicted 

enrollment groups. Based on the reasoning used by Linden and Adams (2006), these 

results appear to suggest that the zip code instruments are not related to the predicted 

probability of program enrollment. However, this assumption can be tested by regressing 

X on Z. If the null hypothesis is rejected at the 0.05 level, then statistically significant 
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evidence exists that Zand X are related (Wooldridge, 2006). Linden and Adams (2006) 

did not report employing this procedure in their article. 

To perform this test in the present study, the researcher regressed the probability of 

program enrollment on a scaled quantitative version of the zip code identifier variable 

where the levels represented the number of subjects in each three-digit category (i.e., level 

1 = 631 subjects and level 19 = 10 subjects). The results of this regression suggest that.Z 

is related to X (t = 9.41,p = 0.000).36 To determine if the results were sensitive to the 

estimated probability of program enrollment, the researcher regressed the program 

participation probability's upper and lower 95% confidence limits (CL) on the scaled zip 

code variable. The results indicated that the initial regression model was not sensitive to 

the estimated probability of program enrollment (95% lower CL: t = 2.51 p = 0.021; 95% 

upper CL: t = 34.36, p = 0.000). In addition, the researcher regressed the actual program 

participation variable on the scaled zip code variable using logistic regression. The results 

further indicated that Zand X are significantly related (Wald/= 15.91,p = 0.000). While 

Table 3 does not appear to provide evidence that Z is related to X, the results of the above 

regressions do provide evidence that Z and X are related. 

36 Because some observers may argue that Z is actually a categorical variable, the researcher regressed 
predicted program participation on 18 zip code dummy variables. This regression also revealed that Z and X 
are related (F = 21.80, p =0.000). The researcher also regressed actual program participation on 18 dummy 
zip code variables. This regression further indicated that X and Z are related (F = 3.56, p =0.000). However, 
the R2 for this regression was 0.04, indicating that Z explain little variation in actual program participation. 
The implications of this finding is explored further later in this chapter. 
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Data Screening 

Descriptive statistics for the study's outcome and independent variables are 

presented in Table 5. The information shows that considerable variability exists in the 

2007 age, utilization, and cost variables. (For consistency, the 2007 age variable was used 

in the OLS and IV regression models because 2007 cost and utilizations were used as the 

outcomes.) The information also shows that the propensity score and predicted program 

Table 5 
Descriptive Statistics for the Study Variables (N = 1,627) 

Variables Mean (SD) Freguency (%) 
Outcome Variables 

Hospital Days (2007) 0.99 (3.80) 

ED Visits 1.61 (3.18) 
(2007) 

Diabetes-Related $2,491.49 
Costs (2007) ($7,366.45) 

Independent Variables 

Age (2007) 46.16 (15.15) 

Propensity Score 0.14 (0.15) 

Predicted Enrollment 0.14 (0.14) 
Probably Score 

Program Participation 229 (14%) 
(1 =yes) 

Female (1 = yes) 1,152 (70.8%) 

Range 

0 - 64 

0 - 45 

$0 - $144,705.10 

2 - 90 

0.00- 1.00 

0.00-0.96 
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enrollment probability variables are very similar. These results are not surprising, 

however, because the propensity score and probability of program participation variables 

were calculated using essentially the same set of covariates. Due to the similarity between 

the propensity score and program participation probability variables, including both in the 

OLS and IV regression analyses may produce multicollinearity. Linden and Adams (2006) 

did not report descriptive statistics for their study variables, so it is impossible to compare 

their propensity score and program participation probability variables to the ones 

developed for the present study. However, they did report checking their regression 

models for multicollinearity, but detected none. The multicollinearity issue is examined 

later in this section. 

Boxplots and histograms for the quantitative variables as well as frequency 

distributions for the qualitative variables were generated during the data screening process. 

The boxplots revealed that univariate outliers were present in all of the quantitative 

variables, and the histograms revealed that these variables were all positively skewed, with 

the exception of the age variable that was approximately normally distributed. Skewness 

and kurtosis statistics further indicated that the distributions for the utilization, cost, and 

propensity score and program participation probability variables deviated substantially 

from normality.37 This finding may not be too problematic, however, because regression is 

robust to violations of normality (Mendenhall & Sincich, 2003). The frequency 

37 The skewness and kurtosis statistics for the variables were as follows: Age (-0.60, -0.91), ED Visits (4.50, 
34.74), Hospital Days (7.55, 83.99), Cost (8.72, 119.38), Propensity Scores (3.79, 15.82), and Program 
Participation Probability (3.53, 13.79). Ideally, these statistics should be close to zero (Tabachnick & Fidell, 
2001). 
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distributions for the gender and program participation variables did not reveal any aberrant 

observations. 

To examine the variables further for univariate outliers, standardized scores were 

calculated for all six quantitative variables. Using 3.29 standard deviations as the 

threshold for identifying univariate outliers, none were detected in the age variable, but 

numerous outliers were found in the utilization, cost, and propensity score and program. 

participation probability variables (Tabachnick & Fidell, 2001).38 Mahalanobis and 

Cook's distances were next calculated to screen for multivariate outliers. Mahalanobis 

distances were evaluated using the chi-square distribution with degrees of freedom equal to 

the number of predictors in the model(/= 20.52, df= 5,p < 0.001).39,4° Cases with 

Mahalanobis distances greater than 20.52 and Cook's distances greater than 1.0 were 

identified as outliers (Tabachnick & Fidell, 2001). Using these measures, 54 multivariate 

outliers were identified. 

Outlier observations either represent contaminated data or accurate observations of 

rare cases. Outliers due to contaminated data are usually either corrected or deleted. 

Because the data came from the Virginia Medicaid Management Information System 

(VaMMIS), the researcher assumed that the observations represented legitimate cases. 

38 The number of univariate outliers were as follows: ED Visits (28), Hospital Days (31), Cost (23), 
Propensity Score (44), and Program Participation Probability (50). 
39 For the purposes of data screening, five predictors were used in the OLS regressions: program 
participation, age, gender, propensity score, and the probability of program participation. 
40 Tabachnick and Fidell (2001) report that the Mabalanobis distance statistic can be used to identify 
multivariate outliers. In most large datasets, cases group around the point created by the intersection of the 
means of all variables in the set. The Mabalanobis distance represents the distance that the cases are from the 
intersection. Cases that are outside the group are multivariate outliers. Tabachnick and Fidell recommend 
using a chi-square distribution and a very conservative probability estimate (p::: 0.001) to identifying 
multivariate outliers based on their Mabalanobis distances. 
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(However, this assumption could not be verified.)
41 

Consequently, the researcher decided 

against simply deleting the outliers and instead focused on examining how their presence 

influenced the analytical results before determining their ultimate fate. This was 

accomplished by regressing the outcomes on the independent variables with the outliers 

included and excluded, examining residual plots, and applying transformations to the 

variables to determine if they reduced the number of outliers or produced any noticeable­

improvements in the fit of the regression models. 

Each outcome was regressed on the independent variables with the propensity score 

and program participation probability outliers included and excluded. Based on a review 

of the model F statistics and p-values, R2 
statistics, coefficient p-values, and residual plots 

little appeared to be gained by excluding the outliers from the analysis. Each outcome 

variable with the outliers included and excluded was next regressed on the independent 

variables and the above statistical measures were reexamined. These results also indicated 

that little would be gained by excluding the outliers from the regression analyses. Finally, 

the regressions were performed with the multivariate outliers included and excluded, which 

further indicated that eliminating the outliers would produce no substantive improvements 

in the regression models. Based on this information, a decision was made to retain the 

outliers in the dataset. 

The natural logarithmic (i.e., log) and square root transformations were then 

applied to the propensity score and program participation probability variables to 

41 
Claims data can contain inaccuracies (Linden et al., 2005). However, the researcher was unable to 

compare the actual claims that were submitted by Medicaid providers to DMAS to verify the accuracy of the 
data used in this study. 
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determine if these transformations produced any improvements in the fit of the regression 

models. Such transformations are usually recommended for skewed variables (Tabachnick 

& Fidell, 2001). While the transformations improved the skewness and kurtosis measures 

of the variables, the regression analyses indicated that they produced no substantive 

improvements to the fit of the models.42
•
43 Consequently, the untransformed propensity 

score and probability of program participation variables were used in the OLS and IV 

regression models. 

The log transformation was next applied to the cost variable, while the square root 

transformation was applied to the ED visits and hospital days variables.
44 

Log 

transformations are generally applied to dollar outcomes, while square root transformations 

are applied to count outcomes (Cohen et al., 2003; Mendenhall & Sincich, 2003).45 These 

transformations improved the skewness and kurtosis statistics for the outcomes.
46 An 

examination of the residual plots for the transformed outcomes indicated that the 

transformations appeared to satisfy the assumptions ofresidual normality, linearity, and 

homoscedasticity. The log transformation also eliminated all univariate outliers in the cost 

outcome variable, while the square root transformations only reduced the number of 

42 
The log transformation actually increased the kurtosis for the probability of program participation variable 

from 13.79 to 52.82. 
43 A decision was made against employing additional transformations due to the complexities associated with 
interpreting regression coefficients for transformed variables (Gelman & Hill, 2007). 
44 

The natural log transformation does not calculate log transformed values for observations that are zero. 
The log transformation did not calculate logs for 252 subjects who did not incur diabetes-related health care 
costs during CY 2007. Zeros were inserted into the log transformed cost variable to replace these missing 
values. 
45 

The researcher did not compare regression models between the original outcomes and their transformations 
because models are not directly comparable (Cohen et al., 2003). 
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outliers in the count outcomes. Residual histograms and p-p plots further revealed that the 

log cost and square root ED visits variables were approximately normally distributed, 

while the square root hospital days variable still remained skewed, although to a lesser 

extent than the untransformed hospital days variable. 

Because the square root transformation neither resulted in the elimination of all 

outliers in the count variables nor produced a residual distribution that was approximately 

normal for the hospital days variable, log and reciprocal transformations were applied to 

these variables (Tabachnick & Fidell, 2001). However, the transformations were rejected 

based on regression analyses, which indicated that they did not result in any substantive 

improvements over the analyses performed using the square root transformation. While 

the square root transformation may not be optimal for the hospital days variable, this 

transformation was still applied to both count outcomes because: 1) it is viewed as an 

acceptable transformation for count outcomes when using OLS regression (Cohen et al., 

2003; Mendenhall & Sincich, 2003), 2) it reduced variable skewness and kurtosis, and 3) it 

improved residual normality, linearity, and homoscedasticity. 

Finally, the data were screened for multicollinearity by generating a correlation 

matrix and calculating variance inflation factors (VIFs). Bivariate multicollinearity was 

defined as intercorrelations of at least 0.80, while multivariate multicollinearity was 

defined as variance inflation factors (VIF) that exceed 10 (Stevens, 2002). All study 

variables were included in the correlation matrix. A review of the intercorrelations 

46 
The skewness and kurtosis statistics for the log cost variable were -0.91 and 0.12 respectively, while these 

measures were 1.26 and 1.53 for the ED Visits and 3.20 and I 1.71 for the Hospital Days square root 
variables. 
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revealed that a strong highly significant (p = 0.94, p = 0.000) correlation existed between 

the propensity score and program participation probability variables. While only the 

propensity score variable will be included in the OLS models, including both variables in 

the second stage of the IV regression models may result in unreliable regression 

coefficients, standard errors, confidence intervals, and p-values for the predictor variables. 

VIFs were next calculated by regressing each transformed outcome on the independent 

variables. None of the VIFs were greater than 10. However, the VIFs for the propensity 

score and program participation probability variables were approximately 8.0 in all 

regression models. While these VIFs did not meet the multivariate multicollinearity "rule 

of thumb" adopted for this study, the high values are problematic and may produce 

multicollinearity in the 2SLS models (Cohen et al., 2003).47 

Because the present study sought to assess the feasibility of Linden and Adams 

(2006) IV regression procedure, the IV regression models were generated using the 

propensity score as an independent variable and the probability of program participation as 

the endogenous variable. However, to test the sensitivity of the IV regression models to 

the inclusion of these highly correlated variables, the propensity score variable was 

stratified into five quintiles, with each quintile containing an approximately equal number 

of subjects based on their propensity scores. 48 The OLS and IV regression models were 

47 
When the probability of program participation was removed and the regressions redone, the VIFs for the 

actual program participation variable were 1.22. 
48 For each quintile, the number of subjects and the average propensity scores were as follows: quintile I 
(325 subjects, 0.081 average propensity score), quintile 2 (326 subjects, 0.083 average propensity score), 
quintile 3 (325 subjects, 0.103 average propensity score), quintile 4 (326 subjects, 0.110 average propensity 
score), and quintile 5 (325 subjects, average propensity score 0.328). 
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then redone using this stratified variable in place of the quantitative propensity scores to 

determine if it influenced the regression models. (These regressions are referred to as the 

block three models in the present study.) Including propensity scores as a quintile 

covariate in multiple regression is an acceptable means of employing this procedure 

(D' Agostino, 1998). In fact, Afifi et al. (2007) included a propensity score quintile 

covariate in the two-part regression models they used to evaluate the Florida Medicaid DM 

program.49 

Ordinary Least Squares and Instrumental Variables Regression Models 

The results of the ordinary least squares (OLS) and instrumental variables (IV) 

regression models developed for the present study are presented in this section. To address 

the study's research questions, three blocks of OLS and IV regression models were 

generated. Each block contained six regression models. The OLS and IV regressions were 

performed using ST AT A version 10.1. 

In the first block, three IV regression models were developed using the procedure 

employed by Linden and Adams (2006). Two-stage least squares (2SLS) regression was 

used to generate the IV models. In the first stage, the probability of program participation 

(the endogenous variable) was regressed on age, gender, and the propensity score variables 

(the exogenous variables), plus the 18 dummy zip code instruments. In the second stage, 

the outcome variables were regressed on the predicted program probability values from the 

49 
Afifi et al. (2007) actually used quintile indicators as covariates in their regression models. However, 

indicator quintiles were not used as covariates in this study for two reasons: I) D'Agostino (1998) reports 
that it is acceptable to include "the propensity score quintile itself' (p. 2276) as a covariate in regression and 
2) using quintile indicators in the block three models would have complicated efforts to assess the sensitivity 
of the regression models in all three blocks to the specific form of the propensity score variable. 
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outcomes were simply regressed on the actual program participation, age, gender, and 

propensity score variables. 
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To test the assumption that the IV estimates were not significantly related to the 

outcomes, residuals from each IV model were regressed on the zip code instruments 

(Linden & Adams, 2006). Nonsignficant model F statistics suggest that no direct 

relationships exist between the instruments and the outcomes. The Sargon chi-square test 

was used to test the assumption that at least some of the instruments were uncorrelated 

with the disturbance terms in the IV models. 50 While not definitive, a nonsignificant p­

value for this test suggests that the instruments and the disturbance term are uncorrelated 

(Gujarati, 2003; Baum, 2006). Finally, the Hausman specification chi-square test was used 

to determine if significant differences exist between the OLS and IV coefficients (Ender, 

n.d.; Greene, 2003; Hadley et al., 2003; Baum, 2006).51 Ifno significant differences exist, 

then the OLS model becomes the default because its coefficients are more efficient 

(Linden & Adams, 2006). 

In the second block, the same procedures were performed as above except that the 

actual high intensity program participation variable was used in the 2SLS regressions to 

determine if the models were sensitive to the particular form of the endogenous variable. 

50 
According to Linden and Adams (2006), the IV assumption that Z is not associated with the unobserved 

error cannot be "definitively" assessed. However, Wooldridge (2006) argues that if researchers have more 
than one instrumental variable, they "can effectively test whether some of them are uncorrelated with the 
structural error'' (p. 533 ). 
51 

Wooldridge (2002) indicates that the Hausman test is a test of the possible endogeneity of the problematic 
independent variable (i.e., the treatment variable when subjects are assigned nonrandomly). If the 
problematic variable is uncorrelated with the disturbance term, then the OLS and IV models should only 
differ by sampling error. 
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In the third block, the same procedures were performed as in the second block, but the 

quantitative propensity score variable was replaced with a quintile variable to test the 

sensitivity of the models to this variable's specific form. 

The results of the three regression model blocks are presented in the following 

subsections. 

Block One OLS and IV Regression Models 
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The results for the block one OLS and IV regression models are presented in Table 

6. To test the assumption that the IV estimates were not directly related to the outcomes, 

residuals from each IV model were regressed on the 18 dummy zip code instruments 

(Linden & Adams, 2006). The p-values for the model F-test suggested that no direct 

relationships exist between the instruments and the residuals for the cost model (F = 1.28, 

p = 0.183) and the hospital days model (F = 0.80,p = 0.707). However, a direct 

Table 6 
Block One: OLS and IV Regression Models Using Linden and Adams' Procedure 

Coefficient 
Variable (SE) 

OLS Regression IV Regression 
Coefficient 

95%CJ p-value (SE) 95%CJ 
Outcome: Diabetes-Related Costs (Log) 

Intercept 3.11 (0.22) 2.68-3.54 0.000 3.11 (0.22) 2.67-3.55 

Program 1.53 (0.20) 1.14 - 1.93 0.000 0.84 (1.37) -1.84 -3.52 

Female -0.06 (0.14) -0.34-0.21 0.648 -0.06 (0.14) -0.34-0.22 

Age 0.04 (0.00) 0.03-0.05 0.000 0.04 (0.00) 0.03 -0.05 

Propensity 3.71 (0.46) 2.79-4.62 0.000 4.36 (1.38) 1.67 -7.06 

Adjusted R2 0.16 0.13 

Sargon x2 

Hausmanx2 

p-value 

0.000 

0.538 

0.655 

0.000 

0.002 

0.109 

0.604 

(continued) 
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Outcome: Emergency Department Visits (Square Root) 

Intercept 1.05 (0.08) 0.89- 1.22 0.000 1.05 (0.08) 0.89-1.22 0.000 

Program 0.20 (0.08) 0.04-0.35 O.Ql 1 0.04 (0.52) -0.97 -1.05 0.940 

Female 0.16 (0.05) 0.05-0.26 0.003 0.16 (0.05) 0.05-0.26 0.003 

Age -0.01 (0.00) -0.01 - -0.01 0.000 -0.01 (0.00) -0.015 --0.008 0.000 

Propensity 0.78 (0.18) 0.43-1.13 0.000 0.93 (0.52) -0.09-1.95 0.074 

Adjusted R2 0.05 0.05 

Sargon x2 0.000 

Hausman x2 0.759 

Outcome: Hospital Days (Square Root) 

Intercept -0.00 (0.08) -0.15-0.15 0.993 -0.00 (0.08) -0.15-0.15 0.989 

Program 0.42 (0.07) 0.28-0.56 0.000 0.51 (0.47) -0.42 -1.44 0.283 

Female -0.01 (0.05) -0.11-0.08 0.771 -0.01 (0.05) -0.11 -0.08 0.772 

Age 0.00 (0.00) -0.00-0.01 0.060 0.00 (0.00) -0.00-0.01 0.062 

Propensity 1.15 (0.16) 0.84 -1.47 0.000 1.07 (0.48) 0.13-2.00 0.025 

Adjusted R2 0.08 0.07 

Sargon x2 0.574 

Hausmanx2 0.847 

relationship appears to exist between the instruments and the residuals for the ED visits 

model (F = 2.36,p = 0.001). This finding suggests that three-digit zip codes are not good 

instruments for the endogenous variable in the ED visits model. The Sargon chi-square 

test indicated that the zip code instruments were not associated with the disturbance terms 

in the cost (p = 0.109) and hospital days (p = 0.574) IV models. However, the test found 

that at least some of the instruments were associated with the disturbance term in the ED 
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visits IV model (p = 0.000). This finding also provides evidence that three-digit zip codes 

are probably not good instruments in the ED visits model. 

The Hausman specification test indicated that there were no significant differences 

between the OLS and IV models. Based on this information, the OLS models should be 

used to interpret the effects of the high intensity DM program on the outcomes for the 

1,627 diabetes study subjects because the parameter estimates for the OLS and IV models 

were not significantly different. The implication is that the probability of program 

participation variable (the endogenous variable in the first stage of the 2SLS equations) 

may not actually be endogenous (i.e., correlated with the models' disturbance terms) 

(Wooldridge, 2002). Nevertheless, care should be exercised when using the OLS models 

to interpret the causal effects of the high intensity DM program because they may not 

actually control for all overt and hidden biases. Failing to control for these biases can 

result in incorrect regression coefficients, standard errors, confidence intervals, and p­

values for the model covariates. 

The information in Table 6 also shows that the probability of program participation 

was not significant in the IV models. This finding is surprising since the program variable 

is highly significant in the OLS models. It may be due to: 1) how the IV program variable 

was calculated (i.e., it was estimated in a separate logistic regression model and then used 

as the treatment variable in the first stage of 2SLS where it was estimated again using the 

same variables that predicted it in the logistic regression model), and 2) the high 

correlation between the program probability and propensity score variables may have 
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resulted in larger variances for the IV estimators, which can translate into larger confidence 

intervals and imprecise p-values (Wooldridge, 2006). 

To investigate the second stage IV regression models further, variance inflation 

factors (VIFs) were calculated for all independent variables. The VIFs for the propensity 

score and probability of program participation variables were 10.3 in all IV regression 

models indicating that multicollinearity was probably present. Multicollinearity is a 

serious problem in OLS regression because it can produce large standard errors for the 

coefficients. However, it is even more serious in 2SLS regressions because coefficient 

variances will be larger due to: 1) the predicted value of the endogenous variable having 

less variation than the actual endogenous variable and 2) the correlation between the 

predicted value of the endogenous variable and the other exogenous variables being much 

stronger than the correlation between the actual endogenous variable and the other 

variables (Wooldridge, 2006). Because multicollinearity appears to be present in the block 

one IV models, the overall results may be incorrect. 

Because the diabetes-related cost variable was log transformed, the OLS regression 

coefficients for the cost model are interpreted as percent changes (Wooldridge, 2006).
52 

The program variable in the model represents the average effect of the high intensity 

program on the outcome when the other covariates are held fixed. The results of this 

model indicate that high intensity DM program participation is associated with a 153% 

increase in diabetes-related health care costs on average when controlling for age, gender, 

and propensity scores. The 95% confidence interval for the coefficient estimate indicates 
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that the true program effect is probably between 114% and 193%. While the estimated 

program effect may seem large, it should be noted that average diabetes-related costs for 

the treatment and control groups were $7,990.39 and $1,590.74, respectively (t = -5.97,p 

=0.000).53 

The program estimate in the IV model is much smaller, suggesting that high 

intensity program participation is only associated with an 84% increase in diabetes-related 

health care costs on average. The 95% confidence interval for the IV program estimate (-

1.84 to 3.52) is also much larger than the estimate's OLS confidence interval. This is due 

to the fact that the IV standard error of the estimate is larger (1.37) than the OLS standard 

error (0.20).54 In IV regression, coefficient confidence intervals and standard errors are 

usually larger than in OLS regression because the variance of the IV estimator is calculated 

by incorporating R\r.,z (i.e., a measure of the strength of the linear relationship between X 

and Z) into the denominator of the variance formula (Wooldridge, 2006). 55 However, the 

overall usefulness of this information is questionable because the program participation 

variable is not significant (p = 0.538) and the IV cost model was rejected in favor of the 

OLS model. 

An examination of the coefficient estimates and confidence intervals for the other 

independent variables reveals that the age and propensity score variables are significant in 

52 According to Wooldridge (2006), when the dependent variable is log transformed, the interpretation of the 
regression coefficient is as follows: % change in y = (I OO*coefficient)change in x. 
53 This is equal to a 402% change in diabetes-related health care costs between the treatment and control 
groups. 
54 Wooldridge (2006) indicates that this is the "price paid" to get a consistent estimator of the outcome if the 
treatment variable is endogenous. 
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both the OLS and IV regression models. In particular, the OLS and IV age estimate (0.04) 

and confidence intervals (0.03 to 0.05) were the same; however, the IV coefficient and 

confidence intervals for the propensity score were larger than its OLS estimate ( 4.36) and 

confidence intervals (1.66 to 7.06). The fact that the propensity score variable was 

significant in both the OLS and IV models is not surprising because this variable 

represents a "composite confounder" designed to reduce overt bias by controlling for 13 

potential confounders (Newgard et al., 2004). 

The coefficients in the ED visits and hospital days OLS and IV models are 

interpreted differently because the square root transformation was applied to these 

outcomes. In the OLS ED visits model, high intensity DM program participation is 

associated with a 0.20 (p = 0.011) increase on average in the square root of ED visits, 

while holding fixed the age, gender, and propensity score variables. 56 The 95% confidence 

interval for the program variable is 0.04 to 0.35. The IV estimate is much smaller, 

indicating that high intensity program participation is only associated with an average 

increase of0.04 in the square root of ED visits when controlling for the effects of the other 

covariates. The estimate's IV confidence interval (-0.97 to 1.05) is also larger than its OLS 

confidence interval. However, these findings may also not be very informative because the 

p-value of the IV program estimate is 0.940 and the IV model was rejected in favor of the 

OLS model. 

55 In IV regression, the asymptotic standard error of /31 is cri/SSTx *K x,z while the asymptotic standard error of 
{31 in OLS regression is cri/SSTx. Because R2 is always less than one, the IV variance is usually larger than 
the OLS variance. In fact, the smaller the R2 x,z, the larger the IV variance (Wooldridge, 2006). 
56 Square root transformation estimates can be converted back to original units by squaring them. For 
instance, high intensity DM program participation is associated with a 0.04 (or 0.202) increase in ED visits. 
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The female, age, and propensity score variables were significant in the OLS ED 

visits model, while only the female and age variables were significant in the IV model. 

The variables' coefficient estimates, standard errors, confidence intervals, and p-values 

were identical in both models. This finding is surprising because IV regression estimates 

are usually larger than the OLS estimates (Winship & Morgan, 1999). 

Finally, the OLS hospital days model indicates that the high intensity OM program 

is associated with an average increase of0.42 (p = 0.000) in the square root of hospital 

days when controlling for the other covariates. The 95% confidence interval for this 

variable is 0.28 to 0.56. The IV program effect estimate is larger than the OLS estimate. 

The IV model estimates the average effect of the high intensity OM program to be 0.51 

with a 95% confidence interval of -0.42 to 1.44. The wide confidence interval is due in 

part to the coefficient's large standard error (0.47). However, the usefulness of the IV 

estimate is also questionable because the variable's p-value was 0.283 and the IV model 

was rejected in favor of the OLS model. 

In addition, only the propensity score covariate was significant in both the OLS and 

IV hospital days models. While the propensity score's OLS coefficient is larger (1.15) 

than its IV coefficient (1.07), its IV standard error is larger (0.48) than its OLS standard 

error (0.16). The variable's IV confidence interval is thus wider (0.13 to 2.00) than its 

OLS confidence interval (0.84 to 1.47). 

The adjusted R2 statistics for the six OLS and IV regression models are as follows: 

diabetes-related costs (0.16 and 0.13), ED visits (0.05 and 0.05) and hospital days (0.08 

and 0.07). While some observers may argue that the regression models are not practically 
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significant because the covariates did not account for much of the variability in the 

outcomes, it is important to remember that the adjusted R2 statistic will always be smaller 

than the R
2 

statistic because it penalizes for the inclusion of irrelevant variables in the 

model. Thus, it is possible to have practically significant regression models that account 

for a large portion of the variation in the outcome with small adjusted R
2 statistics. 

However, Linden and Adams (2006) report that small R2 statistics (in the 0.03 to 0.06 

range) are generally reported in the health services research literature for these outcomes.
57 

In any case, it should be noted that R2 statistics will usually be smaller for IV models than 

for OLS models. IV regression is intended to provide better estimates of the effect ofX on 

Y when Xis related to the disturbance term. Goodness-of-fit measures are not a factor in 

this process (Wooldridge, 2006). 

For comparison purposes, Linden and Adams (2006) rejected their diabetes-related 

cost and ED visits IV models, but accepted their hospital days IV model based on the 

Hausman test results. They also found significant DM treatment effects in their OLS and 

IV estimates for the cost and hospital days models, but did not find significant effects in 

the ED visits model. In addition, they reported low adjusted R2 
statistics for their OLS and 

IV cost (0.095 and 0.094), ED visits (0.006 and 0.006) and hospital days (0.034 and 0.029) 

models. 

57 
According to Wooldridge (2006), R2 statistics will be larger for OLS models than for IV models because 

OLS "minimizes the sum of squared residuals" (p. 525). Wooldridge further reports that R2 statistics are not 
very useful measures in IV regression. 
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Block Two OLS and IV Regression Models 

The results of the block two OLS and IV regression models are presented in Table 

7. These models were developed in the same manner as the block one models, but the 

actual program participation variable was used as the endogenous variable in the 2SLS 

regressions. Model development for the second block began by testing to determine if the 

assumption that the instruments are not directly related to the outcomes was met. This was 

accomplished by regressing the residuals from each IV model on the zip code instruments. 

The model F-tests indicated that no direct relationships existed between the instruments 

and the residuals for the cost model (F = 1.3 8, p = 0.130) and the hospital days model (F = 

0.86,p = 0.626). However, the F-test for the ED visits model indicated that a direct 

relationship existed between the instruments and the residuals (F= 2.49,p = 0.001). These 

results further suggest that three-digit zip codes may not be good instruments in the ED 

visits model. 

The Sargon test indicated that the instruments were not related to the disturbance 

terms in the cost (p = 0.092) and hospital days (p = 0.552) models. However, the test 

indicated that the instruments were related to the disturbance term in the ED visits model 

(p = 0.000). This finding provides additional evidence that three-digit zip codes may not 

be appropriate instruments for the treatment variable in the ED visits model. 

The Hausman test revealed that no significant differences existed between the OLS 

and IV models when using actual program participation as the endogenous variable. Based 

on this information, the OLS models could be used to interpret the effects of the high 
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Table 7 

Second Block: OLS and IV Regression Models Using Actual Program Participation as the 
Endog_enous Variable 

OLS Regression JV Regression 
Coefficient Coefficient 

Variable (SE) 95%CJ p_-value (SE) 95%CJ p_-value 
Outcome: Diabetes-Related Costs (Log) 

Intercept 3.11 (0.22) 2.68-3.54 0.000 3.11 (0.22) 2.68-3.54 0.000 

Program 1.53 (0.20) 1.14-1.93 0.000 0.84 (1.35) -1.80-3.48 0.532 

Female -0.06 (0.14) -0.34-0.21 0.648 -0.06 (0.14) -0.34-0.21 0.650 

Age 0.04 (0.00) 0.03-0.05 0.000 0.04 (0.00) 0.03 -0.05 0.000 

Propensity 3.71 (0.46) 2.79-4.62 0.000 4.36 (1.36) 1.71-7.02 0.001 

Adjusted R2 0.16 0.16 

Sargon x2 0.092 

Hausmanx2 0.604 

Outcome: Emergency Department Visits (Square Root) 

Intercept 1.05 (0.08) 0.89-1.22 0.000 1.05 (0.08) 0.89-1.22 0.000 

Program 0.20 (0.08) 0.04-0.35 0.011 0.04 (0.52) -0.97 -1.05 0.940 

Female 0.16 (0.05) 0.05-0.26 0.003 0.16 (0.05) 0.05-0.26 0.003 

Age -0.01 (0.00) -0.015 - -0.008 0.000 -0.01 (0.00) -0.015 - -0.008 0.000 

Propensity 0.78 (0.18) 0.43 -1.13 0.000 0.93 (0.52) -0.09-1.95 0.074 

Adjusted R2 0.05 0.05 

Sargon x2 0.000 

Hausmanx2 0.759 

Outcome: Hospital Days (Square Root) 

Intercept -0.00 (0.08) -0.15-0.15 0.993 -0.00 (0.08) -0.15-0.15 0.989 

Program 0.42 (0.07) 0.28-0.56 0.000 0.51 (0.47) -0.41 -1.43 0.278 

Female -0.01 (0.05) -0.11 -0.08 0.771 -0.01 (0.05) -0.11-0.08 0.770 

(continued) 
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Age 

Propensity 

Adjusted R2 

Sargon x2 

Hausmanx2 

0.00 (0.00) 

1.15 (0.16) 

0.08 

-0.00-0.01 0.060 

0.84- 1.47 0.000 
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0.00 (0.00) -0.00-0.01 0.060 

1.07 (0.47) 0.14-2.00 0.024 

0.08 

0.552 

0.847 

intensity DM program on the outcome variables. This information suggests that the IV· 

regression models developed for the present study were not sensitive to the particular form 

of the endogenous variable included in the analysis. 

The variables' coefficient estimates, standard errors, confidence intervals, and p­

values in the block two models were very similar (and in some cases identical) to those in 

the block one models. In particular, no insignificant (a = 0.05) variables in the block one 

IV models were significant in the second block IV models. The 2SLS IV regression 

models were screened for multicollinearity by calculating variance inflation factors (VIFs). 

The VIFs for the predicted value of program participation from the first stage regression 

and the propensity score variables were 10.3 in all regressions. Based on this information, 

substantial multicollinearity was present in the models due to these variables. Thus, the 

usefulness of the second block IV regression models appears questionable. 

Block Three OLS and IV Regression Models 

Table 8 contains the results of the block three OLS and IV regression models. In 

these models, actual program participation was used as the endogenous variable; however, 

the quintile propensity score was used in place of the continuous propensity score variable. 

To test the assumption that the instruments were not directly related to the outcomes, 
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Table 8 

Block Three: OLS and IV Regression Models Using Actual Program Participation as the 
Endogenous Variable and the Propensity Score Quintile Variable 

OLS Regression JV Regression 
Coefficient Coefficient 

Variable (SE) 95%CJ e-value (SE2 95%CJ e-value 
Outcome: Diabetes-Related Costs (Log) 

Intercept 2.88 (0.24) 2.40 -3.35 0.000 3.45 (0.33) 2.80-4.10 0.000 

Program 1.87 (0.20) 1.48-2.25 0.000 8.15 (1.33) 5.55-10.75 0.000 

Female -0.06 (0.14) -0.34-0.22 0.658 -0.06 (0.18) -0.41 -0.30 0.751 

Age 0.04 (0.00) 0.03-0.05 0.000 0.04 (0.01) 0.03-0.05 0.000 

Propensity 0.25 (0.05) 0.15-0.34 0.000 -0.27 (0.12) -0.52 - -0.03 0.028 

Adjusted R2 0.15 0.08 

Sargon x2 0.222 

Hausmanx2 0.000 

Outcome: Emergency Department Visits (Square Root) 

Intercept 1.01 (0.09) 0.83 - 1.19 0.000 1.06 (0.10) 0.86-1.26 0.000 

Program 0.27 (0.07) 0.12-0.42 0.000 0.85 (0.40) 0.06- 1.64 0.035 

Female 0.16 (0.05) 0.05-0.27 0.003 0.16 (0.06) 0.05-0.27 0.004 

Age -0.0 I (0.00) -0.015 - -0.009 0.000 -0.01 (0.00) -0.015 - -.008 0.000 

Propensity 0.05 (0.02) 0.01-0.09 0.008 0.00 (0.04) -0.07-0.08 0.964 

Adjusted R2 0.05 0.04 

Sargon x2 0.000 

Hausman x2 0.136 

Outcome: Hospital Days (Square Root) 

Intercept -0.05 (0.09) -0.22 - 0.11 0.540 0.08 (0.10) -0.12-0.29 0.415 

Program 0.54 (0.07) 0.40-0.67 0.000 2.04 (0.41) 1.23 -2.85 0.000 

Female -0.0 I (0.05) -0.11 -0.08 0.795 -0.0 I (0.06) -0.12-0.10 0.837 

(continued) 
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Age 

Propensity 

Adjusted R2 

Sargon x2 

Hausmanx2 

0.00 (0.00) -0.000 - 0.006 

0.07 (0.02) 0.03 - 0.10 

0.06 

0.073 0.00 (0.00) -0.000 - 0.006 

0.000 -0.06 (0.04) -0.13 - 0.02 

0.04 

0.062 

0.138 

0.706 

0.000 
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residuals from each IV model were regressed on the instruments. The model F-tests 

indicated that no direct relationships existed between the instruments and the residuals for 

the cost (F= 1.12,p = 0.324) and hospital days (F= 0.74,p = 0.768) models. However, 

the F-test for the ED visits model indicated that a direct relationship existed between the 

instruments and the outcome (F = 2.56, p = 0.000). This finding provides additional 

evidence that three-digit zip codes are not good instruments to use in the ED visits model. 

As with the previous blocks, the Sargon test indicated that the instruments were not 

related to the disturbance terms in the cost (p = 0.222) and hospital days (p = 0.706) 

models, but that at least some of the instruments were related to the disturbance term in the 

ED visits model (p = 0.000). However, the Hausman test results in the block three models 

were different from the test results in the previous blocks. In particular, the Hausman test 

indicated that significant differences existed between the OLS and IV models for the cost 

(p = 0.000) and hospital days (p = 0.000) outcomes. This information may indicate that the 

OLS cost and hospital days models were inconsistent due to the endogeneity of the 

program participation variable. 

To determine if the block three models were influenced by multicollinearity, VIFs 

were calculated for the 2SLS IV regression models. All VIFs were well below the 10.0 
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threshold suggesting that multicollinearity was not present. These findings indicate that 

the IV models developed for this study were sensitive to the quantitative form of the 

propensity score variable. This is probably due to the fact that multicollinearity apparently 

results when propensity scores and the estimated program probability variable are included 

as covariates in the second stage of the 2SLS IV regression models. 

Unlike the previous two model blocks, the coefficients for the program 

participation variables were significant in all block three IV regression models. This result 

may be due to multicollinearity that was present in the IV regression models of the two 

previous blocks. The information in the block three cost models indicates that program 

participation in the OLS model was associated with a 187% increase on average in 

diabetes-related health care costs, while program participation was associated with an 

average increase of 815% in health care costs in the IV model. While the IV program 

estimate is substantially larger, the OLS estimate is closer to the estimate reported in the 

first two blocks. The confidence intervals for the block three OLS estimate includes the 

point estimate from the previous blocks; however, the IV confidence intervals are 

extremely large and do not include the IV estimates from those blocks. 58 The results for 

the program variable in the block three ED visits and hospital days models are similar to 

those in the cost model. 

For the other covariates, use of the quintile propensity score did produce some 

changes in the coefficient standard errors and confidence intervals. However, it did not 

58 While the confidence interval for the ED visits IV model includes the OLS point estimate, the confidence 
intervals for the cost and hospital days IV models do not contain their respective OLS point estimates. 
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produce any changes in the statistical significance of the coefficients except for the 

propensity quintile variable in the hospital days model, which was nonsignificant (p = 

0.138). In the previous blocks, the propensity score was significant (p = 0.025 and 0.024 

for the block one and two models, respectively). The other covariates that were significant 

in the first two blocks remained significant in the third block. 

The information from the block three models suggests that the high intensity DM 

program had a significant positive effect on diabetes-related costs, ED visits, and hospital 

days. The direction and magnitude of the program coefficients is surprising because they 

are all positive and considerably larger than the OLS coefficients. It would seem 

reasonable to expect the DM program to have a negative effect on the outcomes because 

the program is intended to achieve that result, and for the IV estimates to be smaller than 

the OLS estimates (and also for the IV estimates' confidence intervals to include the OLS 

estimates) if they are actually influenced by omitted variable bias. This finding may be 

problematic because the fact that the IV estimates in the block three models are 

considerably larger than the OLS estimates is not entirely consistent with omitted variable 

bias in OLS regression (Wooldridge, 2006). 

Several reasons may exist that account for these results. First, the positive program 

effect may be a result of the high intensity DM participants having more advanced 

illnesses than the standard intensity recipients and thus requiring more intensive health 

care services. Second, the positive effect may be due to the fact that the individuals in the 

high intensity program were selected for this intervention because they have higher health 

care costs and utilizations. The regression models thus reflect the fact that the high 



www.manaraa.com

139 

intensity program by design is associated with increased health care costs and utilizations. 

Third, enough time has not elapsed for the high intensity program to reduce health care 

costs and utilizations. DM is intended to be a long-term process and it may take several 

years before the high intensity program produces a negative effect in the study outcomes 

(Afifi et al., 2007). 

Fourth, the instrumental variables in the IV regressions are "weak," meaning that 

the partial correlation between the instruments and the endogenous variable is low. If this 

occurs, then the IV estimator will have large asymptotic bias, which may result in 

inconsistent regression estimates, standard errors, and confidence intervals, thus making 

model inferences very unreliable (Staiger & Stock, 1997; Wooldridge, 2006; Gelman & 

Hill, 2007). One method to test for weak instruments is to calculate the model F-statistic 

from the first stage IV regression. This statistic tests the hypothesis that the instruments do 

not enter into the first stage regression (Staiger & Stock, 1997). The rule of thumb for 

determining whether the instruments are weak is an F-statistic that is less than 10, which 

implies that the model lacks substantive predictive power (Stock, n.d.). 

To test for weak instruments, first stage F-statistics were calculated for each block 

three IV regression model. The calculation yielded an F-statistic of 3 .28 (p = 0.000) for 

each model. 59 Based on this information, it appears that the zip code instruments are weak 

59 F-statistics were also calculated for the block one and two first stage IV regression models. The F-statistic 
for the first block models was 326.83 (p = 0.000), while the F-statistic for the second block models was 2.02 
(p = 0.006). The fact that the F-statistic for the block one models was so large is probably not that 
informative because the R2 statistic for the regression of the predicted values from the first stage on the 
exogenous variables (excluding the instruments) was 0.90, which suggests a high level of multicollinearity 
(Wooldridge, 2006). A similar analysis performed for the block two models also yielded an R2 statistic of 
0.90. The multicollinearity is due to the fact that the predicted values are a linear function of the exogenous 
variables including the instruments. 
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in the present study and probably contribute to the IV estimates' large coefficients, 

standard errors, and confidence intervals. 60 As a result, the block three IV models are 

probably biased and should not be used to interpret the effects of the DM program even 

, though the Hausman test indicated that the IV cost and hospital days models should be 

preferred over the OLS models. It should be noted that due to the large variances that IV 

estimates tend to have, some researchers prefer to interpret treatment effects using OLS. 

estimates even if they are biased (Winship & Morgan, 1999). Thus, the researcher would 

probably have recommended interpreting the effects of the high intensity DM program 

using the OLS models developed in this study even if the instruments were not weak 

(assuming of course that the IV coefficients, standard errors, and confidence intervals were 

as large as the ones presented in Table 6). 

Summary 

The objective of this study was to test the feasibility of an instrumental variables 

(IV) regression procedure developed by Linden and Adams (2006) for evaluating disease 

management programs. Their procedure involved using three-digit recipient zip codes as 

instruments in two-stage least squares (2SLS) IV regression. As part of their procedure, 

they used propensity scores as a covariate to control for overt biases and the predicted 

60 Some observers may argue that this information contradicts the discussion on the association ofX and Z 
presented on pages 74 and 75. That discussion differs from the above discussion because it focused on 
whether a relationship existed between the instruments and the endogenous variable. The above discussion is 
focused on the extent to which at least one of the instruments is useful for predicting program participation, 
given the exogenous variables. Moreover, Morgan and Winship (2007) report that researchers do not agree 
on how large the association between Zand X must be before IV regression can proceed. Generally, 
researchers agree that z is too weak if the regression of X on Z is not statistically significant at a small level. 
However, if this regression is performed using a large dataset, a weak Z can still produce significant results. 
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The study found that propensity scores that appear to control for potential overt 

biases in ordinary least squares (OLS) regression can be calculated using claims data from 

the Virginia Medicaid Management Information System. To test the feasibility of Linden 

and Adams' (2006) IV regression procedure, three blocks of O LS and IV regression 

models were developed. The appropriateness of the IV models was determined, in part by 

comparing them to OLS models, which are generally viewed as being more efficient 

estimators. 

The first block IV regression models used the predicted value of program 

participation from a separate logistic regression as the endogenous variable and the 

propensity score as an exogenous covariate. While the Sargon test revealed that the zip 

code instruments were probably not good instruments in the ED visits IV model because 

they were associated with the disturbance term, the Hausman test indicated that using 

three-digit zip codes as instruments did not appear to produce IV models that were 

significantly different than their OLS counterparts. The analysis performed for the present 

study suggested that zip codes may not be good instruments to use in IV models that are 

intended to estimate DM treatment effects. However, the results from the first block 

models may be questionable because the models were biased due to multicollinearity, 

which resulted from including both the predicted value of program participation and 

propensity scores as independent variables in the second stage of 2SLS IV regression. 
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In the second block models, actual program participation was used as the 

endogenous variable to test the sensitivity of the IV models to this variable's specific form. 

The analytical results were very similar to those reported in the first block models 

suggesting that the IV models were not sensitive to the endogenous variable because no 

significant differences were found between the OLS and IV models. However, these 

results are also questionable due to multicollinearity that resulted from including both the 

predicted value of program participation (calculated by regressing actual program 

participation on the instruments and exogenous variables in the first stage of 2SLS 

regression) and the propensity scores as covariates in the IV models. 

Finally in the third block models, actual program participation was used as the 

endogenous variable; however, a quintile propensity score was used in place of the 

quantitative propensity score to test the sensitivity of the models to this variable's specific 

form. The analysis revealed that the models were sensitive to this variable because 

significant differences were found between the OLS and IV regression cost and hospital 

days models. These results suggest that when multicollinearity is eliminated, using three­

digit zip codes as instruments resulted in IV regression models that were preferable to the 

OLS models presumably due to the endogeneity of the treatment variable. However, these 

IV models should probably still be rejected because an examination of the first stage IV F­

statistics revealed that the instruments were weak, which probably produced biased 

coefficients, standard errors, and confidence intervals for the model covariates. 
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Chapter 5 

Discussion and Conclusions 

The present study examined the feasibility of an instrumental variables (IV) 

regression procedure developed by Linden and Adams (2006) for use in disease 

management (DM) program evaluations. In disease management, individuals are often 

assigned nonrandomly to the treatment and control groups (i.e., they self-select into the. 

programs). Nonrandom assignment can complicate efforts to evaluate DM programs 

because the treatment ( or participation) variable may be correlated with unobserved 

confounding variables. Unless evaluators can control for these variables by including them 

in regression models, DM program effect estimates may be biased. Linden and Adams 

(2006) argue that IV regression using patient three-digit zip codes as instruments can be 

used to derive unbiased DM treatment effect estimates by eliminating the correlation 

between the treatment and unobserved confounding variables. 

IV regression can be difficult to employ, however, because researchers must find 

one or more instruments that are: 1) directly correlated with the treatment variable, but not 

the outcome variable, and 2) uncorrelated with the unobserved variables that influence 

treatment assignment (Wooldridge, 2006). Linden and Adams (2006) hypothesize that 

participant three-digit zip codes meet these two assumptions and are thus valid instruments 

for DM program participation. To test their hypothesis, they used IV regression to 

evaluate the effects of participation in an Oregon managed care diabetes DM program on 

three outcome variables: total diabetes costs, emergency department (ED) visits, and 

hospital days. They assessed the appropriateness of their IV regression models by 
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comparing them against comparable ordinary least squares (OLS) regression models. 

Based on the analysis, Linden and Adams (2006) found that IV regression using zip code 

instruments only appeared to produce an unbiased treatment effect estimate on the hospital 

days outcome. While they noted that their procedure was successfully employed in one 

model, they reported that it might not generalize to other DM programs. 

The present study sought to test the generalizability of Linden and Adams' (2006) 

IV regression procedure by using it to evaluate the effects of a high intensity Virginia 

Medicaid diabetes DM program. The study was guided by three research questions: 

1. Which statistical method provides the best unbiased estimates of high intensity DM 

program participation on the outcome variables? 

2. Do the parameter estimates and confidence intervals for the predictor variables 

differ depending upon which statistical method is used? 

3. What are the advantages and disadvantages of using OLS and IV regression to 

evaluate high intensity DM program effectiveness? 

The study hypothesis was that instrumental variables regression using three-digit zip code 

instruments will provide an unbiased estimate of the effects of disease management 

participation on a group of high intensity Virginia Medicaid diabetes patients enrolled in 

the Healthy ReturniM DM Program. The remainder of this chapter focuses on answering 

the research questions and discussing the study limitations, implications of the study 

findings for the medical and health policy communities, future research possibilities, and 

important study conclusions. 
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Research Question Analysis 

Analytical findings for the three research questions are presented in this section, 

which begins with a discussion of the best statistical method to use for evaluating the 

effects of high intensity participation in the Virginia Healthy Returns'M DM program. An 

examination of the ordinary least squares (OLS) and instrumental variables (IV) regression 

coefficients and confidence intervals is then presented followed by a discussion of the 

advantages and disadvantages of using OLS and IV regression in DM evaluations. 

Best Statistical Method for Evaluating the High Intensity DM Program 

The first research question focused on determining whether OLS or IV regression 

using three-digit zip code instruments produced the best unbiased estimates of high 

intensity DM program participation on the study outcomes. To address this research 

question, three blocks of OLS and IV regression models were generated. The first block 

was performed using the procedure employed by Linden and Adams (2006) where the 

estimated probability of program participation from a separate logistic regression model 

was used as the endogenous variable and age, gender, and a quantitative propensity score 

variable were used as covariates. The second block was performed using actual program 

participation as the endogenous variable and age, gender, and a quantitative propensity 

score variable as covariates. Finally, the third block was performed using actual program 

participation as the endogenous variable and age, gender, and a quintile propensity score 

variable as covariates. 

To test the IV regression assumption that Z is related to X, a series of simple 

regressions were performed to determine if the instruments were related to both the 
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predicted value of program participation and the actual program participation variables. 

Residuals from each IV regression model were also regressed on the outcome variables to 

test the assumption that the IV estimates were not directly related to the outcomes. The 

Sargon chi-square test was used to test the assumption that at least some of the zip code 

instruments were uncorrelated with the disturbance terms (i.e., instrument exogeniety) in 

the IV models. The Hausman specification chi-square test was used to determine if 

significant differences existed between the OLS and IV regression coefficients (i.e., 

treatment endogeniety). In addition, the IV regression models were checked for 

multicollinearity by calculating variance inflation factors (VIFs). Finally, the relevancy of 

the zip code instruments was tested by examining the first stage F-statistics from the IV 

regressions to determine if the instruments were weak (i.e., instrument relevancy).61 

The following observations are made based on the above analyses: 

1) The assumption that Z is related to X appeared to be met based on the results of 

the simple regressions that assessed this relationship. These results are 

comparable to results reported by Linden and Adams (2006) and suggest that at 

least some of the three-digit zip codes may be appropriate instruments for the 

high intensity DM program participation variable. 

2) The assumption that no direct relationships exist between the instruments and 

the outcomes appeared to be fulfilled for the cost and hospital days IV 

61Toe usefulness of instrumental variables regression depends on whether the instruments are valid. Invalid 
instruments can result in meaningless IV regression models (Stock & Watson, 2007). To ensure that the 
instruments are valid, Wooldridge (2006) and Stock and Watson (2007) recommend testing for the 
endogeniety of the problematic explanatory variable, the exogeniety of the instruments, and the relevancy of 
the instruments. 
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regression models, but not for the ED visits IV models. This suggests that 

three-digit zip codes may be appropriate instruments in the cost and hospital 

days models, but not in the ED visits models. Linden and Adams (2006) 

reported that no direct relationships existed between the zip code instruments 

and outcomes in their IV regression models. 
62 

3) The assumption of instrument exogeniety was demonstrated in the cost and. 

hospital days IV regression models, but not in the ED visits models. This 

information further suggests that three-digit zip codes may be appropriate 

instruments for use in the cost and hospital days models, but not in the ED 

visits models. Linden and Adams (2006) did not report checking for instrument 

exogeniety in their study. 

4) The assumption of treatment endogeniety did not appear to be met in the first 

two regression blocks, but did appear to be met in the block three IV cost and 

hospital days models. This information indicates that the IV regression models 

did not contribute to the prediction of the outcome variables in the first two 

blocks, but may have contributed to the prediction of costs and hospital days in 

the third block. Linden and Adams (2006) reported that treatment endogeniety 

was only met for their hospital days IV model. 

62 
Linden and Adams (2006) assessed this assumption by regressing the residuals from each IV model on the 

outcomes. However, Morgan and Winship (2007) report that this is actually "a strong and untestable 
assumption" (p. 196). They argue that Z and Y will always be related after conditioning on X because Z is a 
"collider" that is caused by both Zand U (or unobserved variables). Based on this information, the 
assumption that no direct relationships exist between the instruments and the outcomes may not have actually 
been achieved in the present study. 
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5) Multicollinearity was detected in the first two IV regression blocks, but not in 

the third IV regression block. Thus, the usefulness of the overall results from 

the first two blocks may be questionable. Linden and Adams (2006) reported 

that multicollinearity was not present in their regression models. 

Multicollinearity apparently occurred in the present study when the predicted 

value of program participation was combined with the quantitative propensity 

scores in the second stage of the IV regressions because these two variables 

essentially represent the same concept. As a result, the quantitative propensity 

score variable was replaced with a quintile variable in the block three 

regressions to eliminate multicollinearity from the models. 

6) While statistical validity tests tended to favor the block three IV cost and 

hospital days regressions, the assumption of instrument relevancy was not met 

based on an examination of the first stage model F-statistics. First stage F­

statistics provide a measure of the information content contained in the zip code 

instruments ( or the extent to which the instruments explain variation in the 

treatment variable), given the other exogenous variables included in the IV 

model. Because weak instruments can bias IV regression estimates, the results 

of the block three models (as well as the other two blocks) may be unreliable 

(Stock & Watson, 2007). This finding could explain why the block three IV 

estimates appeared unstable compared to their OLS counterparts (Stock, n.d.). 

Despite the fact that some of the above observations tended to favor the IV 

regressions (i.e., evidence was obtained suggesting that Z is associated with X, Z is not 
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associated with Y, and Xis not associated with U), the IV models are probably unstable 

due to multicollinearity and weak instrument bias.63 Thus, OLS regression using a 

propensity score covariate appears preferable in this study for estimating the "unbiased" 

effects of high intensity participation in the Virginia Healthy Return�M DM Program. It 

should be noted that this finding does not suggest that IV regression using three-digit zip 

code instruments is inappropriate for estimating program effects in other DM evaluations 

because it only applies to the present study. Different analytical results might be obtained 

if this IV regression procedure is applied to other samples. 

While the study hypothesis was not supported, an important analytical finding 

involves the use of propensity scores as a control variable. The present study demonstrated 

that propensity scores that control for some observable differences (i.e., overt biases) 

between the treatment and control groups can be calculated using data from the Virginia 

Medicaid Management Information System. When combined with OLS regression, 

propensity scores may offer a parsimonious means of deriving less biased estimates of the 

effects of the high intensity DM program on certain outcomes by controlling for many 

observable variables that may account for nonrandom assignrnent.64 In fact, propensity 

scores combined with OLS regression are popular estimators in program evaluation 

because the scores can act as a control function by containing information relevant for 

estimating treatment effects (Wooldridge, 2002). 

63 
"U" refers to unobserved variables that are related to X and Y. 

64 
There are restrictions on the number of covariates that can be included in regression models. A general 

rule is that there should be one predictor for every 20 subjects. Including all available covariates (kitchen­
sink regression) may produce instability in the models, incorrect results, and decreased statistical precision 

(Newgard et al., 2004). 
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However, there are some limitations involved with using propensity scores as a 

regression covariate. First, propensity scores can only control for observed covariates that 

are available in a dataset. They will not control for unobserved confounders except to the 

extent that they are correlated with the measured variables used to estimate the propensity 

scores (Stukel et al., 2007). Researchers using propensity scores as a regression covariate 

should therefore note that treatment effect estimates may still be biased due to unobserved 

confounders. 

Second, using propensity scores as a covariate may increase bias because 

regression adjustment imposes a linearity constraint that may be unrealistic when modeling 

treatment effects on some outcomes. While nonlinear terms can be added to regression 

models, it may be difficult for researchers to know how nonlinear propensity scores should 

be approximated. Failure to use the correct nonlinear approximations for variables may 

bias treatment effect estimates due to regression model misspecification (Winship & 

Morgan, 1999; Shadish et al., 2002). 

Third, the ability of propensity scores to control for observed differences in 

regression models may depend on their specific form. In particular, quantitative 

propensity scores may offer a better means of controlling for preexisting differences than 

quintile propensity scores because they can account for more variability in the observed 

covariates than quintile scores. Information presented in Table 3 in Chapter 4 

demonstrated that quantitative propensity scores could control for significant differences 

between study groups on the nonwhite race, western region, hospital days, ED visits, and 

diabetes-related cost variables. However, when the same regressions were performed 
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using the quintile propensity scores, the regressions revealed that the quintile scores failed 

to control for significant differences between the study groups on the hospital days and 

cost variables (Appendix B). While the quintile propensity score variable may have 

eliminated multicollinearity from the block three IV models, the ability of this particular 

variable to control for observable differences may be limited. 

Despite the above limitations, however, propensity scores can reduce bias in 

estimating treatment effects in nonrandomized observational studies. When combined 

with regression, this method may allow for stronger causal inferences in DM evaluations 

by reducing bias due to nonrandom assignment. This in turn may help to prevent 

inappropriate conclusions due to analyses performed on observational data that fail to 

correct for selection bias (Newgard et al., 2004). 

OLS and IV Regression Coefficients and Confidence Intervals 

The second research question focused on determining if the OLS and IV regression 

estimates differed. In general, OLS and IV estimates will differ because IV regression 

produces a larger asymptotic variance, which can increase the magnitude of the 

coefficients, standard errors, and confidence intervals (Winship & Morgan, 1999; Hadley 

& Cunningham, 2004; Wooldridge, 2006). When supported by the results of statistical 

tests that assess the validity of the IV models, differences between the OLS and IV 

coefficients may suggest that the OLS estimates are inconsistent due to omitted variable 
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Adams, 2006; Wooldridge, 2006).65 
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To address the second research question, the researcher compared the OLS and IV 

coefficients and confidence intervals for the variables in the three regression blocks. The 

comparisons revealed that the block one, two, and three OLS and IV coefficients, standard 

errors, and confidence intervals for the age and gender variables remained relatively 

unchanged, while the program and propensity score OLS and IV estimates differed. This 

finding could suggest that the age and gender estimates were not correlated with the error 

term because their OLS and IV estimates were comparable in all regression blocks, while 

the program and propensity score variables were correlated with the error term in the OLS 

regressions (at least in the block three IV cost and hospital days models) (Lindrooth, 

Hoerger, & Norton, 2000; Long et al., 2005; Linden & Adams, 2006).66
•
67 However, 

examining the differences between the OLS and IV estimates for the independent variables 

may not be very meaningful in the present study due to the multicollinearity and weak 

instrument bias that were encountered in the regression models. 

65 
Hadely et al. (2003) further argue that researchers should determine the appropriateness of IV estimates 

based on the availability of important variables that could be used as covariates in OLS regression and the 
extent to which the OLS and IV estimates are similar. 
66 This finding seems feasible because age and gender were exogenous variables in the IV regressions. It is 
also not very interesting because treatment effect estimates, rather than covariate estimates, are usually the 
focus of program evaluation studies (Mohr, 1995). In addition, the observation is not entirely unexpected 
because similar results were observed in other studies reviewed by the researcher (Hadley & Cunningham, 
2004; Linden & Adams, 2006). 
67 

The propensity score variables developed for the present study may actually be endogenous because it is 
doubtful that they contain information on all observable variables that account for nonrandom assignment 
into the high intensity and standard intensity programs. Important excluded variables would thus be 
subsumed under the error term. 
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While IV regression can be used to overcome selection bias due to omitted 

variables, it does not always offer a good solution to this issue because IV coefficient 

estimates can be unstable due to large variances (Winship & Morgan, 1999). For this 

reason, Hadley et al. (2003) recommend that researchers exercise some discretion in 

accepting IV estimates based on statistical validity tests due to possible coefficient 

instability. They further recommend that researchers who use IV regression to estimate 

treatment effects in observational studies consider reporting both OLS and IV coefficient 

estimates to establish a range of possible treatment effects on the outcomes. 

IV estimates are usually larger than OLS estimates because IV regression only uses 

a portion of the covariation in the treatment and outcome variables in the calculation 

process. Using only a portion of the covariation represents a direct loss of statistical power 

that can induce the IV estimators to exhibit increased sampling variance compared to that 

exhibited by similar OLS estimators. Thus, an unbiased IV estimator can actually be 

unstable compared to a biased and inconsistent OLS estimator. This issue can be 

especially troubling if the instruments are weak (Morgan & Winship, 2007). 

To better understand how IV regression can increase coefficient magnitudes and 

how weak instruments can bias IV estimates by inflating coefficient variances, the 

calculations used to produce OLS and IV estimators are briefly reviewed. For simplicity, 

the calculations are limited to bivariate regressions (and one instrument for the IV 

estimator) where the outcome (Y) is regressed on the treatment variable (X) (the logic 

behind the calculations also applies to multiple regression). The OLS estimator forfh is 

calculated as: 
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This equation simply means that the OLS estimator equals the sample covariance between 

the treatment (X) and outcome (Y) variables divided by the sample variance of the 

treatment variable. The OLS estimator can be derived as long as the denominator is 

greater than zero (i.e., meaning that there is variation in X). Equation 5 shows that the 

OLS estimator has more statistical power, and is therefore more efficient, than the IV 

estimator because it uses all of the covariation in the treatment and outcome variables in 

the calculation process (Wooldridge, 2006). As a result, OLS estimates will tend to be 

smaller and more efficient than IV estimates. 

However, the IV estimator for ./h is calculated as: 

[6] f.3-hat1v = 

�(Z,. -Z)(Y;-Y) 
1 = I 

n 

_r (Z,. -Z)CX,-X) 
1 = I 

This equation demonstrates that the IV estimator will often be larger than the OLS 

estimator because it is calculated as the covariance of the instrument (Z) and the outcome 

(Y) divided by the covariance of the instrument (Z) and the treatment (X) variables. The 

instrument and treatment variables must be correlated in order for this equation to be 

solved. Equation 6 indicates that IV regression only uses a portion of the covariation in the 

treatment and outcome variables in the calculation process because the numerator equals 

the effect of the instrumental variable on the outcome, while the denominator represents 
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the effect of the instrumental variable on the treatment variable. If the instrument is 

dichotomous (as in the present study), then the numerator equals the mean outcome 

difference between Z = 0 and Z = 1 and the denominator equals the mean effect of the 

treatment (Wooldridge, 2006; Martens, Pestman, de Boer, Belitser, & Klungel, 2006).
68 

As previously mentioned, the IV coefficients, standard errors, and confidence 

intervals can be very unstable if Z is weak. A weak instrument will bias the IV estimator 

because the denominator in equation 6 will be small, which makes the estimator sensitive 

to small changes. 
69 

Because the covariance in the denominator behaves as a multiplier, a 

small correlation will produce a large standard error and confidence interval, which can 

make the coefficient estimate less reliable (Martens et al., 2006). Because the relationship 

between the instrument and treatment variable is independent of sample size, a weak 

instrument can produce an IV coefficient that contains no genuine information about the 

causal effect of the treatment on the outcome (Morgan & Winship, 2007). The results of 

the first stage IV F-statistics and second stage IV coefficients, standard errors, and 

confidence intervals for the three regression blocks suggest that this process may have 

occurred in the present study. 70 

Before concluding this discussion, it is worth mentioning one additional issue that 

may have contributed to the weak instrument bias encountered in the present study. 

According to Linden and Adams (2006), the zip code instrument they proposed using is 

68 
The source for the equations is Wooldridge (2006). 

69 
In fact, Morgan & Winship (2007) report that weak instrument bias can "explode" the IV estimator due to 

the small denominator. 
70 

This comment refers to the role that sample size plays in OLS regression. A larger sample can produce a 
better OLS estimator (Stock & Watson, 2007). 
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based, in part, on a natural experiment that assumes the existence of a high enrollment rate 

zip code and a low enrollment rate zip code. The natural experiment that these geographic 

boundaries model is how differences in zip codes are related to differences in DM 

participation rates. Linden and Adams (2006) assume that because three-digit zip codes 

mimic a natural experiment, geographic proximity will make DM participants and non­

participants more similar on unmeasured confounders. They are not alone in their use 9f 

geographic boundaries as instrumental variables. In fact, the use of naturally occurring 

instruments has gained considerable popularity among many researchers who view them as 

"gifts of nature" (Morgan & Winship, 2007). 

However, not all researchers are convinced that naturally occurring boundaries 

make good instruments. In particular, some argue that the variation supposedly induced in 

the endogenous predictor by naturally occurring instruments is often either poorly 

explained and/or not supported by relevant theories. Moreover, random variation created 

by natural experiments does not necessarily ensure that the instrument has no direct effect 

on the outcomes. As a result, instruments from natural experiments can be "black boxes" 

that reduce their ability to produce unbiased treatment effect estimates needed for public 

policy development and guidance (Morgan & Winship, 2007). These concerns may 

explain why three-digit zip codes did not ultimately appear to be appropriate instruments 

for the high intensity DM participation variable used in the present study. 

Advantages and Disadvantages of Using OLS and IV Regression in DM Evaluations 

The third research question concerned the advantages and disadvantages of using 

OLS and IV regression to estimate treatment effects in DM evaluations. This research 
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question was addressed through an assessment of what the researcher learned about these 

methods during the present study. Because both methods use least squares to minimize the 

sum of squared residuals, they have similar advantages and disadvantages. Nevertheless, 

researchers planning to estimate the effects of DM interventions when selection bias is 

present should still consider the advantages and disadvantages of both methods as well as 

their own strengths and capabilities (i.e., knowledge of regression methods, computer 

capabilities, access to data, etc.) before deciding upon which method (if either) to use. 

An advantage of using OLS regression in DM evaluation is that OLS is a widely 

recognized data analysis technique that is used by researchers in a variety of social science 

disciplines to evaluate alternative explanations for study outcomes (Morgan & Winship, 

2007). Because OLS regression allows researchers to control for ( or fix) many correlated 

factors that may simultaneously affect the outcome variable, they can use it to infer 

causality when analyzing observational data (Wooldridge, 2006). In other words, OLS 

regression can allow researchers using nonexperimental data to do what natural scientists 

using experimental data can do: hold other factors fixed (Wooldridge, 2006). OLS 

regression has thus become the common language that many researchers "speak" when 

discussing the effects of social interventions on outcome variables (Stock & Watson, 

2007). Using OLS regression can therefore allow DM evaluators to communicate their 

findings to a wide audience of social scientists. 

Another advantage of using OLS regression in DM evaluation is its computational 

ease. All major statistical software programs include regression procedures that allow for 

estimating linear and nonlinear relationships between both continuous and categorical 
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variables in cross sectional and longitudinal datasets (Morgan & Winship, 2007). Because 

these software programs can operate on personal computers, it should be very convenient 

for many evaluators to use OLS regression to estimate DM program participation effects 

(Kennedy, 2003). However, the evaluators must understand how to use and interpret OLS 

regression in order for the results to be meaningful. Failure to understand the mechanics of 

OLS regression can result in some very impressive looking findings that are essentially 

meaningless. 

Other advantages of using OLS regression in DM evaluations include its theoretical 

properties that make it an unbiased and consistent estimator (Stock & Watson, 2007). For 

instance, OLS is considered to be an unbiased estimator under the Gauss-Markov theorem 

when certain statistical assumptions are met such as linearity, random sampling, no perfect 

collinearity, zero conditional mean, and homoscedasticity. Moreover, when these 

assumptions are met, OLS is viewed as the best linear unbiased estimator (BLUE) because 

it has the smallest variance conditional on the values of the independent variables 

(Wooldridge, 2006). Because it often produces the smallest variance compared to other 

estimators, many social scientists view OLS regression as an efficient estimator. When 

these characteristics are subsequently met, OLS can be an appropriate estimator to use in 

DM evaluations. 

However, using OLS regression may have certain disadvantages when the 

statistical assumptions are not met. For instance, the validity ofregression inferences 

depends partly on meeting the assumption of linearity between the outcome and 

independent variables. This assumption can be violated when the outcome is a 
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dichotomous variable where y = 1 denotes one possible outcome and y = 0 denotes the 

other possible outcome (i.e., patient received adequate care = 1, patient did not receive 

adequate care = 0). While OLS regression can be used to model binary outcomes, it can 

result in some problematic results (i.e., probability estimates that are above 1 or below 0, 

nonnormal errors, and unequal variances).71 As a result, a probit or logistic estimator may 

be more appropriate to use when the study outcomes are dichotomous because these 

estimators force the predicted values of the outcomes to be between O and 1 (Cohen et al., 

2003; Mendenhall & Sincich, 2003; Wooldridge, 2006; Stock & Watson, 2007). 

Regression inferences can also be invalid if the homoskedasticity assumption is 

violated which can occur when the study outcome is a count variable, such as the number 

of participant hospitalizations or ED visits in a calendar year. While there are certain 

variance-stabilizing transformations that can be applied to satisfy the homoskedasticity 

assumption for OLS regression use, other estimators may be more appropriate. In 

particular, the Poisson regression estimator or the negative binominal regression estimator 

may be preferable when the outcome is a count variable. While OLS regression can be 

used to model OM effects on count outcomes, failure to use a more appropriate estimator 

may result in biased results (Mendenhall & Sincich, 2003; Wooldridge, 2006; Stock & 

Watson, 2007). 

In addition, the validity ofregression inferences can be questionable if the zero 

conditional mean assumption is violated, which is a key assumption that must be met in 

71 
An OLS regression model is referred to as a linear probability model when the dependent variable is binary 

because y can only assume two values O and 1. Because y-hat represents the predicted probability of success 
in a probability model, the probability estimates must be between O and 1 (Stock & Watson, 2007). 
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order for OLS regression to provide unbiased results. The zero conditional mean 

assumption assumes that all important variables that are related to the outcome and the DM 

treatment variable are included in the model (Wooldridge, 2006). Failure to meet this 

assumption will result in omitted variable bias. For example, by failing to include factors 

that determine high intensity DM participation such as personal motivation, the OLS 

estimator of the slope in the regression of diabetes-related costs on high intensity program 

participation (while controlling for age, gender, and propensity score) could be biased. In 

other words, the mean of the sampling distribution of the OLS estimator may not equal the 

true effect on diabetes-related costs of a unit change in high intensity participation (i.e., 

moving from participant to nonparticipant) (Stock & Watson, 2007). Thus, the estimated 

coefficient for the treatment variable cannot be interpreted as the effect of the high 

intensity program because it also captures part of the effect of the omitted variables 

(Ettner, 2004). 

Because most DM programs allow subjects to self-select into the treatments, it is 

very likely that OLS program effect estimates will be biased ( or incorrect) due to omitted 

variables bias (Linden & Adams, 2006). Therefore, the primary advantage ofusing 

instrumental variables regression in DM evaluations is that it can offer a solution to 

omitted variables bias. IV regression can produce an unbiased effect estimate when the 

treatment variable (X) is correlated with the disturbance term (U) by dividing X into two 

variation parts. The first variation part is correlated with U (the unknown determinates of 

program participation), while the second variation part is uncorrelated with U. By using 

one or more instrumental variables that isolate the second part, IV regression focuses on 
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variation in X that is uncorrelated with U and disregards variation in X that is correlated 

with U. IV regression can therefore derive unbiased treatment effect estimates by isolating 

variation in X that is uncorrelated with U (Stock & Watson, 2007). 

Other advantages of IV regression include ease of interpretation due to its 

similarity with OLS regression, ease of calculation due to its inclusion in most statistical 

software programs, and its popularity among certain groups of social scientists such as. 

economists (Linden & Adams, 2006; Wooldridge, 2006).72 

The disadvantages of using IV regression in DM evaluation include the fact that 

researchers must find one or more variables (Z) that are correlated with the program 

participation variable (X), but not with the study outcomes (Y) or the unobserved variables 

(U) that influence both X and Y. Moreover, the instrumental variables must be strongly 

correlated with X in order for the regression coefficients to be reliable. Failure to use 

instruments that explain most of the variation in X may seriously bias the IV estimator by 

producing large standard errors and confidence intervals that do not contain the true value 

of the coefficients (Stock & Watson, 2007). Finding suitable variables that meet these 

often contradictory requirements can be very difficult in DM evaluation because evaluators 

will typically only have access to administrative claims and enrollment data, which can 

limit the number of suitable variables that can be used as instruments (Wooldridge, 2002; 

Linden & Adams, 2006). 

72 According to Wooldridge (2006), IV regression is second only in popularity to OLS regression in applied 
econometrics. 
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Other disadvantages of using IV regression in DM evaluation include the fact that 

the method still needs to meet certain theoretical OLS assumptions, such as no 

multicollinearity. Meeting this assumption can be especially difficult in two-stage least 

squares (2SLS) IV regression because the predicted value ofX from the first stage is a 

linear combination of both the instruments and the exogenous variables that function as 

covariates in the second stage. However, failure to meet this assumption can bias IV 

regression results due to large coefficient standard errors and confidence intervals 

(Wooldridge, 2006). 

Finally, another disadvantage of using IV regression in DM evaluation results from 

the fact that IV estimates are only based on a portion of the covariation in the causal and 

outcome variables. Using only a portion of the information in the data can result in a 

direct loss of statistical power thus resulting in IV estimators that exhibit more sampling 

variance than other estimators. As a result, a consistent and asymptotically unbiased IV 

estimator may be outperformed by a biased and inconsistent OLS estimator (Morgan & 

Winship, 2007). 

Implication of Study Findings for the Medical and Policy Communities 

The objective of the present study was to assess the feasibility of an instrumental 

variables (IV) regression procedure for disease management (DM) evaluations rather than 

to address clinically oriented issues concerning the quality and outcomes of DM services 

for specific patients or policy oriented issues about the overall effects of high intensity 

diabetes DM services on health care costs and utilizations. The study therefore focused on 

issues that may be of interest to quantitatively oriented health services researchers rather 
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than to clinicians (i.e., practicing physicians and other health care providers) or health 

policy makers. While it may appear that both clinical and policy oriented inferences could 

be made based on the study results, caution should be exercised if attempting to use them 

for such purposes. For instance, some observers may conclude that the results suggest that 

the high intensity DM participants did not receive appropriate care or even that high 

intensity DM services are not effective because program participation was associated with 

significant increases in diabetes-related costs, ED visits, and hospital days. However, DM 

is a long-term process (Afifi et al., 2007) and the study results only represent subjects' one 

year experience in a high intensity diabetes DM program. As a result, they do not reflect 

changes that may occur in outcomes over time due to the program. Panel ( or longitudinal) 

data studies are probably more useful for program evaluations that seek to assess the 

overall effects of interventions because they can account for changes that occur overtime 

for the same group of subjects while holding constant unobserved factors that may affect 

study outcomes (Wooldridge, 2006). 

In any case, drawing inferences about the effects of the Virginia Healthy Returns
5M 

DM Program based on the results ofthis study are probably not appropriate because it has 

only been in operation for two years. Therefore, policy makers should probably consider 

the results of a panel data study before making any summative decisions about the Healthy 

Returns
5M 

program or high intensity DM services. 

The above discussion does not suggest that examining patient quality of care and 

other clinical and policy oriented issues related to DM services is not important. In fact, 

studying these issues is very important because chronic diseases, such as diabetes, asthma, 
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hypertension, and coronary heart disease, affect approximately one fourth of all Americans 

and account for almost 50 percent of all health care costs (Morisky et al., 2008). Thus, 

efforts to improve the quality of care that chronically ill patients receive have been given 

high priority and research needs to be directed toward determining if these interventions 

result in both decreased utilization of high cost health care services and improved patient 

health behaviors (Ofman et al., 2004).73 

Addressing clinically oriented issues that may interest health care providers about 

the effects of DM services on specific patients is probably beyond the immediate scope of 

observational studies that employ IV regression methods to estimate treatment effects. 

Instead, clinical trials (i.e., experimental studies) are more appropriate for answering 

questions that are of immediate interest to physicians and other health care providers. In 

well-designed clinical trials, all subjects are randomized to the study groups in order to 

allow researchers to derive estimates of the average treatment effects for the entire 

population of subjects eligible for the trials. Assuming that a particular patient is a random 

draw from one of those populations, a physician could use the effect estimate from the trial 

to determine what the expected outcome of the treatment would be for his or her patient. 

In other words, clinical trials allow physicians to use the expected outcome of the 

treatment to make decisions about specific patients (Newhouse & McClellan, 1998). 

However, IV methods are more appropriate for addressing policy issues that 

involve incremental decisions about health care services (i.e., whether additional chronic 

73 In fact research has demonstrated that disease management can result in improved health status, improved 
health b;haviors, and decreased health service utilizations for chronically ill patients (Lorig et al., 1999; Afifi 
et al., 2007; Morisky et al., 2008). 
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diseases should be included in a DM program or even if the DM program should continue 

to operate) than decisions about specific patient treatments. In particular, effect estimates 

that are derived using IV regression do not usually represent the average effect of an 

intervention in the entire population because they only apply to the subpopulation of 

patients who actually participated in the treatment. Specifically, IV estimates do not 

represent the average effect on a random patient from the entire population, but rather the 

average effect on an individual from the subpopulation that participated in the treatment. 

This marginal population is often not identifiable by physicians because it may not be 

immediately obvious to them that a particular patient is from that subpopulation. As a 

result, IV estimates may be only indirectly applicable to physicians (Newhouse and 

McClellan, 1998). 

This does not mean, however, that physicians cannot use IV estimates for clinical 

decisions. For instance, physicians may find IV estimates to be more relevant than clinical 

trial estimates if their patients differ from the populations included in the trials. In that 

case, the IV estimates may provide better insights into the likely effects of a particular 

intervention than clinical trial results (Newhouse & McClellan, 1998). 

Study Limitations 

This study had several limitations. First, it was limited to diabetes recipients who 

were continuously enrolled in the DM program during CY 2007. The study results are 

thus not applicable to DM participants who have one of the other conditions covered under 

the Virginia Healthy ReturnfM DM program. The results may also not be applicable to 

diabetes program participants who enrolled after December 31, 2007 because they may be 
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different from the study participants. The study is further limited because it only included 

fee-for-service Virginia Medicaid recipients. As a result, the findings are not generalizable 

to Virginia Medicaid recipients who receive diabetes DM services through one of the 

State's managed care organizations. 

Second, the study findings may be limited due to how the propensity score variable 

was calculated. Propensity scores can control for overt bias if they are estimated using 

important predictors of group membership. The propensity score method assumes that all 

confounding variables that predict treatment assignment and are correlated with the 

outcome are included in the logistic regression model (Shadish et al., 2002). The 

predictors used to estimate the propensity scores in this study were selected for 

accessibility rather than for the role they played in identifying DM recipients for the high 

intensity intervention. It is very likely that important observable variables exist in the 

Virginia Medicaid Management Information System that should have been included in the 

propensity score model. However, the researcher was unable to include these variables for 

logistical reasons (i.e., computer programming capabilities and time and effort needed to 

develop the variables). As a result, the propensity scores used in the study are probably 

biased due to omitted variables, which could influence the results of the OLS and IV 

regression models developed for this study (D' Agostino & Kwan, 1995; Yanovitzky et al., 

2005; Baser, 2006).
74 

74 
The Healthy Returns'™ DM contractor identifies patients as either high intensity or standard intensity based 

on a predictive modeling analysis of Medicaid claims data. Because the model is proprietary, the researcher 
is not aware of which specific variables are used to identify DM patients. 
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Third, the present study is limited due to the specific instrumental variables 

procedure that was employed. The study only considered the feasibility of using patient 

three-digit zip codes as instruments in a cross sectional analysis. The analytical results 

suggested that three-digit zip codes were not appropriate instruments to use in such an 

analysis. However, the IV estimation procedure can be used in time series and panel data 

regression methods (Wooldridge, 2006). If three-digit zip codes are used as instrumet).ts in 

an IV time series or panel data analysis, different results may be obtained. In addition, the 

study is limited because only one instrument was considered. Other variables may exist in 

the Virginia Medicaid Management Information System that could prove to be more 

appropriate instruments than zip codes. However, identifying these instruments was 

outside the scope of the present study. 

Fourth, the study is limited because it focused on one statistical method for 

adjusting for hidden selection bias in DM program evaluations, which did not prove 

beneficial. Other methods exist for estimating program effects in observational studies that 

may be more appropriate to use for evaluating the Healthy Return�M DM program. 

Examples include the Heckman two-step method where a multiple regression model is 

estimated for an outcome variable concurrently with a selection model that compares 

program participants to nonparticipants on selected variables or fixed effects panel 

regression models that adjust for fixed unobserved characteristics that may be associated 

with selection into the treatment group (Schneider et al., 2007). These methods have been 

used in similar studies, but were not considered in the present study. 
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Future Research Possibilities 

Several future research possibilities were identified during the present study. 

While the study results suggested that participant three-digit zip codes were not useful 

instruments in IV regression, the results are nevertheless limited to this particular study. 

Different results may be obtained if the procedure is used on different samples or in 

different ways. As a result, additional research could be performed using the IV regre_ssion 

procedure in a cross sectional analysis of a different sample of Virginia Healthy Return/M 

DM diabetes participants or on samples composed of participants with one of the other 

chronic conditions that are covered under the program, such as congestive heart failure, 

asthma, or coronary artery disease. Moreover, the IV regression procedure could be 

employed in a cross sectional analysis of one or more samples of Virginia Medicaid 

managed care DM participants. 

If the results from these analyses support the results of the present study, then 

enough evidence may exist to conclude that three-digit zip codes are not appropriate 

instruments to use in DM evaluations. Researchers interested in using IV regression to 

estimate the effects ofDM program participation should therefore focus attention on 

identifying other variables that can serve as instruments. 

Another potential research area involves using patient three-digit zip codes as 

instruments in an IV time series (i.e., data collected over time on one or more variables) or 

panel data (i.e., data constructed from repeated cross sections over time on a set of 

subjects) data evaluation of a DM program. In fact, evaluating a DM program using time 

series or panel data may be more insightful than using cross sectional data because it will 
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allow evaluators to assess how the average effects ofDM participation on certain outcomes 

change over time. Moreover, these methods are suitable for DM evaluations of Medicaid 

programs (and maybe other DM programs) because recipient level claims data are typically 

compiled on both a monthly and yearly basis. IV regression using three-digit zip code 

instruments could therefore be used to estimate the effects of DM participation over time 

(Wooldridge, 2006). 75 

Another area of research could involve using a generalized method of moments 

(GMM) IV estimator instead of a two-stage least squares (2SLS) IV estimator to test the 

feasibility of using three-digit zip codes as instruments for DM participation in models 

where the outcomes are count variables. While two-stage least squares regression is 

probably the most commonly used IV method for both continuous and non-continuous 

outcomes, other methods exist that may be more feasible for count outcomes such the 

GMM IV method. The GMM IV method may be a better estimator than 2SLS regression 

because it can specifically account for a count outcome's Poisson distribution. By 

accounting for this particular distribution, results that are different from those derived in 

the present study may be obtained because the regression estimates would probably 

assume more plausible values (Johnston, Gustafson, Levy, & Grootendorst, 2008).76 

Another area for future research involves recalculating the propensity scores 

developed in this study by including all observable variables that are used to assign 

75 In this case, the analysis could probably focus on estimating the effect of another month ofJ?� 
participation on outcomes such as health care costs, hospital days, or emergency department v1s1ts 
(Wooldridge, 2006). 



www.manaraa.com

170 

Virginia Medicaid recipients to either the high intensity or standard intensity programs in 

the logistic regression model that estimates the propensity scores. The propensity score 

developed for the present study is most likely biased because it does not include all 

variables that are used in the program assignment process. The ability of the propensity 

score variable to control for overt selection bias could therefore be improved by 

reestimating it using these variables and then reperforming the OLS regressions to derive 

less biased effects of high intensity DM participation. 

In addition, a potential research area may involve testing the feasibility of the self­

care education that participants receive when they are enrolled in the Healthy Returns5M 

Program and other DM programs. Self-care management emphasizes the central role that 

patients play in managing their chronic illnesses. Appropriate self-care of chronic 

conditions is an important element of DM because it can result in improved health status 

and reduced health care utilizations for participants (Lo rig et al., 2001 ). Because self­

efficacy plays a role in the ability of individuals to manage their chronic conditions over 

the long-term, such a study could be guided by self-efficacy theory. Self-efficacy is 

important in DM because it involves the confidence that individuals have to perform 

behaviors that are needed to successfully manage their chronic conditions. Variables that 

could be used in such a study include health education components, health behaviors and 

status, and health care utilizations and costs (Lorig et al., 2001; Marks et al., 2005). 

76 In other words the count outcomes would not have to be transformed to meet the heteroskedasticity 
assumption and the regression coefficients, standard errors and confidence intervals between the IV and OLS 
models may be more comparable. 
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Finally, another potential research area may involve examining the specific 

demographic characteristics of Virginia's three-digit zip code areas in order to better 

understand what these areas represent and how they may produce variation in the treatment 

variable that is not associated with variation due to the unobserved determinates of 

program participation. While the usefulness of this particular analysis may seem 

questionable due to the results of the present study, other research may reveal that three­

digit zip codes are feasible instruments to use in IV regression. If this occurs, then the 

characteristics of the three-digit zip codes will need to be studied in order for researchers to 

better understand how the zip codes induce variation in the DM participation variable. As 

part of this analysis, the researchers could also determine which three-digit zip codes are 

weak so they can discard them in order to use the most relevant zip codes as instruments in 

their IV regression models (Stock & Watson, 2007). Failure to fully understand and 

explain this variation may lessen the ability of the instruments to provide informative 

information about the effects of the Virginia Healthy Return/M DM Program. 

Conclusions 

1bree important conclusions emerged from the present study. First, IV regression 

using participant three-digit zip codes as instruments did not prove to be an effective 

means of estimating the effects of high intensity participation in the Healthy Return/M DM 

Program. Second, propensity scores developed using administrative claims and enrollment 

data from the Virginia Medicaid Management Information System can be estimated that 

control for preexisting observable differences between the study groups. Propensity scores 

that control for overt bias can therefore be included in OLS regression models to derive 
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less biased estimates of high intensity program participation. Third, several advantages 

and disadvantages exist when using either OLS or IV regression. Researchers who plan to 

evaluate DM programs using either of these regression methods should consider their own 

personal strengths as well as the advantages and disadvantages of the methods before 

committing to either approach. Failure to do this may result in the researchers finding 

themselves in situations where they are unable to effectively use either method to evaluate 

DM programs. 
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Appendix A: An Overview of the Inverse Propensity Score Weighting Method 

Propensity scores (PS) are often used in social science research to estimate 

treatment effects through one or more of the following three methods: regression covariate 

adjustment, stratification, or matching. A less frequently used method of employing 

propensity scores involves using the inverse of the estimated propensity scores to develop 

a weight for each study subject. The objective of propensity score weighting is to develop 

weighted averages of the data that approximate what would have been derived through 

randomized experiments (Gelman & Hill, 2007). According to Austin (2008), propensity 

score weighting is rarely used in medical research. (Austin does not offer an explanation 

for why propensity score weighting is rarely used.) As a result, the researcher decided to 

briefly explore propensity score weighting in Appendix 1 using the dataset developed for 

the present study. 1 

As an alternative method of employing propensity scores, Robins and colleagues 

suggest deriving an average treatment effect estimate by conducting a simpl.e regression of 

the outcome on the treatment using inverse propensity score weights (IPSW) of 1/PS and 

1/(1 - PS) for the treatment and control groups, respectively (Frank et al., 2008).2•
3 

Following this guidance, high intensity DM program participants (the treatment group) and 

standard intensity participants (the control group) were weighted accordingly. By using 

1 The researcher's objective in writing Appendix I was not to provide a detailed analysis of propensity score 
weighting. Instead, the objective was to briefly explore its use for possible consideration in a future study. 
Technically-oriented information on propensity score weighting can be found in sources such as Robins and 
Rotnitzky (1995), Robins, Hernan, and Brumback, (2000), Lunceford and Davidian, (2004), Austin and 
Mamdani, (2006), and Morgan and Winship (2007). 
2 IPSW can also be used in multiple regressions (Gozalo & Miller, 2007). 
3 Additional weighting procedures exist that can be used to estimate the treatment effect for the treated 
subjects or the treatment effect for the control subjects (Gelman & Hill, 2007; Frank et al., 2008). However, 
these procedures are not discussed in this appendix section. 
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this procedure, the high-intensity DM participants were weighted more the lower their 

propensity for enrollment in the high-intensity program, while the standard intensity 

participants were weighted more the higher their propensity for enrollment in the high­

intensity program (Frank et al., 2008). The weights were calculated using SAS version 

9.1, while the regression analyses were performed using STAT A version 10.1. 

The comparison produced using the IPSW method focuses the analysis on the 

strongest overlap in propensity scores. Specifically, it focuses on subjects who are most 

likely to respond to change: individuals who received the treatment, but had a low 

propensity for doing so, with individuals who did not receive the treatment, but had a high 

propensity for doing so (Frank et al., 2008). Through this process, IPSW mimics 

propensity score matching by essentially creating a hypothetical group of treatment 

subjects who are similar to the control subjects in terms of all characteristics except actual 

treatment assignment (Morgan & Winship, 2007; Ma, 2008). The estimate produced using 

IPSW is referred to as the estimated effect for individuals at the margin of indifference 

(EOTM) (Figure Al) (Frank et al., 2008). 

There are several advantages of using the IPSW procedure over propensity score 

matching, stratification, and regression adjustment. In particular, the IPSW method offers 

a relatively intuitive process for controlling for overt bias that is easy to calculate and use 

in regression analyses. Moreover, the IPSW method can improve estimation efficiency 

because the full sample of subjects is retained in the analysis (however, not all subjects 

contribute equally to average effect estimates due to the weighting scheme) (Frank et al., 
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Figure A 1. Propensity Score Overlap for the Treatment and Control Groups 
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2008). In addition, the IPSW method can balance the treatment and control groups by 

producing equal covariate distributions between the study groups (Ma, 2008). The major 

concern with using this method is that some propensity score weights may have extreme 

values that exert undue influence on the average treatment effect estimates. This concern 

can be ameliorated, however, by examining the dataset to identify these weights and 

trimming their values so they do not unduly influence average treatment effect estimates 

(Frank et al., 2008). 

For this analysis, extreme weights were identified as cases with standardized scores 

greater than 3.29 (Tabachnick & Fidell, 2001). Thirty-two weights met this criterion and 

were thus considered extreme. Using the procedure identified by Frank et al. (2008), these 

weights were trimmed to a value of one greater than the next most extreme weight in the 
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dataset, which was 12.62 (Frank et al., 2008).4 To test the sensitivity of the IPSW method 

to these extreme values, each outcome was regressed on the program participation variable 

weighted by both the trimmed and untrimmed weights. These simple regressions revealed 

that the trimmed and untrimmed weighted program coefficients were very similar for the 

ED visits and hospital days models, which may suggest that the extreme values did not 

actually exert much influence in the regressions. However, the trimmed weighted program 

coefficient for the diabetes-related cost model was higher (1.62) than the untrimmed 

weighted coefficient (1.56). This finding could suggest that the extreme values did exert 

some influence in the diabetes cost regression model. 

The researcher next used the trimmed and untrimmed weights to assess covariate 

balance between the study groups. This process was accomplished using a series of simple 

linear probability models (i.e., the treatment variable was regressed on the covariate using 

OLS regression) (Cohen et al., 2003; Wooldridge, 2006).5 The models were generated for 

each covariate, which was weighted separately using the trimmed and untrimmed weights. 

The results are presented in Table Al. The regressions revealed that the trimmed weights 

did not control for significant differences between study groups on the 2006 diabetes­

related cost variable (p = 0.015), while the untrimmed weights did control for all 

significant differences between the study groups. (The untrimmed weighted results are 

4 lbe average IPSW was 1.96 (SD = 2.82). The range of the weights was 1.00 to 32.51. Weights greater 
than 11.62 were considered extreme based on having a standardized score greater than 3.29. 
5 

Some observers may argue that logistic regression should have been used to assess covariate balance. The 
researcher decided against using logistic regression for two reasons: I) Wooldridge (2006) indicates that 
linear probability models are often used in economics when the outcome is dichotomous, and 2) the logit 
co=and in ST ATA version I 0.1 did not support analytic weights (i.e., weights that are inversely 
proportional to the variance of the observations), which was the procedure used to employ the inverse 
probability score weights in the present study. However, OLS regression in STAT A supports using analytic 
weights. 



www.manaraa.com

200 

similar to the results obtained using logistic regression to assess covariate balance, which 

are presented in Table 3 in Chapter 4.) Because the covariates were similarly balanced 

between study groups when using the trimmed and untrimmed weights, a decision was 

made to report the results from the regressions using both weights because: 1) the extreme 

untrimmed inverse propensity score weights may have exerted some influence in the 

diabetes-cost regressions and 2) the untrimmed weights appeared to more effectively 

control for covariate balance between study groups than the untrimmed weights. 

Table Al. Simple Linear Probability Regressions to Assess Covariate Balance Using 
IPSW (N = 1,627)* 

Adjusted Adjusted 
p value p value 

Unadjusted (IPSW (IPSW 

Variables p value** Trimmed)** Untrimmed)** 

Female 0.546 0.528 0.211 

Nonwhite Race 0.001 0.351 0.378 

W estem Region 0.001 0.367 0.489 

Country of Origin US 0.101 0.701 0.224 

English Language 0.508 0.096 0.127 

US Citizen 0.135 0.777 0.137 

Age 0.131 0.351 0.860 

Hospital Days 0.000 0.211 0.313 

ED Visits 0.000 0.873 0.414 

Diabetes Related Costs 0.000 0.015 0.462 

*Outcome variable is program participation (1 = high intensity participation and O = non­

high intensity participation) 

**a = 0.05 
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The researcher next estimated the average effect of the high intensity DM program 

by regressing the study outcome variables on the program participation variable weighted 

using both trimmed and untrimmed inverse propensity scores.6 For comparison purposes, 

additional multiple regression models were generated by regressing the outcomes on the 

program participation and quantitative propensity score variables as well as the program 

participation, age, gender, and quantitative propensity score variables. The estimated 

effects of the high intensity DM program that were derived from the regressions are 

resented in Table A2. 

Four observations can be made about the information in Table A2. First, the 

propensity score weights do not appear to add much to the program effect estimates in this 

study because the weighted estimates are comparable to the unweighted estimates that 

were calculated in the multiple regressions. In other words, none of the four regression 

models in Table A2 are clearly dominant. 

Second, the program effect estimates may be relatively stable because comparable 

estimates were derived in the four regression models. However, readers should not 

conclude that any of the models presented in Table A2 actually depict the "true" casual 

effect of the high intensity program due to omitted variable bias (i.e., propensity scores can 

only control for overt bias to the extent that important observable variables are included in 

the calculation process and hidden bias to the extent that the included variables are 

correlated with excluded unobserved variables). 

6 
Simple regression was used because the inverse propensity score weights account for the covariates 

included in the propensity score models (Frank et al., 2008). 
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Table A2. Estimated Effect of High Intensity DM Participation on the Study Outcomes 
Model Coefficient (SE)* p value* 95% CI* 
Models Weighted by IPSW (Trimmed)** 

Diabetes Related Costs 

ED Visits 

Hospital Days 

1.62 (0.12) 

0.17 (0.05) 

0.37 (0.05) 

Models Weighted by IPSW (Untrimmed)** 

Diabetes Related Costs 

ED Visits 

Hospital Days 

1.56 (0.12) 

0.19 (0.05) 

0.34 (0.05) 

Models Using Propensity Score Covariate** 

Diabetes Related Costs 

ED Visits 

Hospital Days 

1.53 (0.21) 

0.19 (0.08) 

0.42 (0.07) 

0.000 

0.002 

0.000 

0.000 

0.000 

0.000 

0.000 

0.013 

0.000 

Models Using Age, Gender, and Propensity Score Covariates** 

Diabetes Related Costs 

ED Visits 

Hospital Days 

1.53 (0.20) 

0.20 (0.08) 

0.42 (0.07) 

0.000 

o.oi 1 

0.000 

1.38 -1.86 

0.06-0.27 

0.26-0.48 

1.32 - 1.79 

0.09-0.30 

0.23 -0.45 

1.13 -1.94 

0.04-0.35 

0.28-0.56 

1.14 - 1.93 

0.04-0.35 

0.28 -0.56 

*High intensity program effect coefficient, standard error,p Value, and 95% confidence 
interval for each outcome variable. 
** Study outcomes are transformed: diabetes-related costs (log), emergency department 

visits (square root), and hospital days (square root). 

Third, because the four regression models produced similar estimates, researchers 

faced with similar results could use that information to depict a combination of approaches 
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that may provide useful boundaries on the magnitude of the true program effect estimate. 

However, the researchers must ensure that they aggressively controlled for both overt and 

hidden biases if using these propensity score methods to bolster their argument that they 

have derived true program effect estimates. In order to accomplish this, researchers would 

probably need access to multiple "information rich" datasets to identify as many variables 

as possible that may have directly or indirectly (through their correlations with important 

unobserved variables) accounted for preexisting differences between the study groups. 

These variables would then have to be included in the propensity score calculation process 

in order for the scores to control for these counfounding variables. Failure to do this would 

limit the ability of the researchers to argue persuasively that they have derived unbiased 

boundaries for the true effect of the program. 

Finally, the effect estimates produced in the third set of models are almost identical 

to the effect estimates produced in the fourth set of models. This finding suggests that 

simply including a propensity score covariate in a regression of the outcome on a treatment 

variable may be just as effective as including a propensity score and other variables as 

covariates in the regression, but this interpretation is dependent upon whether the other 

variables were included in the propensity score calculation process. If the variables were 

included, then little may be gained by including them and the propensity scores as 

covariates in the regressions. If the variables were not included in the propensity score 

calculation, then it may be more feasible to include them in the regression as covariates; 

however, if the variables contribute to study group assignment, then they should be 

included in the propensity score calculation. 
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Based on the information presented in this appendix section, inverse propensity 

score weights appear to offer a viable means of estimating average treatment effects in DM 

evaluations that use observational data.7 However, the determination of whether 

propensity score weights, matching, stratification, or covariate adjustment are preferable in 

a particular case will have to be made by the researchers based on their knowledge of the 

study topic and relevant statistical methodologies. 

7 Morisky et al. (2008) used inverse propensity score weights to adjust for attrition bias in �he study they 
performed on the effects of Florida Medicaid's OM program on self-reported health behav10rs and outcomes. 
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Appendix B: Simple Logistic Regression Analysis to Assess Covariate Balance Using the 
Quintile Prorensity Score (N = 1,627) 

Treatment Control Unadjusted Adjusted 
Variables (n = 229)* (n = 1,398)* p-value** p-value** 
Female 166 (72.5%) 986 (70.5%) 0.546 0.695 

Nonwhite Race 52 (22.7%) 198 (14.2%) 0.001 0.079 

W estem Region 170 (74.2%) 1,166 (83.4%) 0.001 0.096 

Country of Origin US 225 (98.3%) 1,343 (96.1%) 0.110 0.249 

English Language 226 (98.7%) 1,386 (99.1%) 0.511 0.615 

US Citizen 226 (98.7%) 1,355 (96.9%) 0.147 0.248 

Age 46.6 (14.25) 44.93 (15.70) 0.131 0.468 

Hospital Days 4.90 (29.75) 0.44 (1.91) 0.000 0.000 

ED Visits 2.36 (3.65) 1.50 (3.20) 0.001 0.083 

Diabetes Related Costs $7,473.33 $1,060.48 0.000 0.000 
($16,962.42) ($2,380.31) 
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